
Database Application
Developer’s Guide

VERS ION 5

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

JBuilder™

Refer to the file DEPLOY.TXT located in the redist directory of your JBuilder product for a complete list of files that
you can distribute in accordance with the JBuilder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1997, 2001 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
Other product names are trademarks or registered trademarks of their respective holders.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JBE0050WW21001 5E7R0401
0102030405-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1-1
Documentation conventions 1-5

Chapter 2
Understanding JBuilder database
applications 2-1

Understanding JBuilder’s DataExpress
architecture . 2-4

The Borland database-related packages 2-6

Chapter 3
Setting up JBuilder for
database applications 3-1

Connecting to databases 3-2
JBuilder sample files 3-2

Note for Unix users 3-3
Setting up JDataStore 3-4
Setting up InterBase and InterClient. 3-4

About InterBase and InterClient 3-4
Using InterBase and InterClient with

JBuilder . 3-5
Tips on using sample InterBase tables 3-6

Adding a JDBC driver to JBuilder 3-7
Creating the .library and .config files 3-7
Adding the JDBC driver to projects 3-8

Deploying database applications. 3-8
Troubleshooting database connections in

the tutorials . 3-9

Chapter 4
Connecting to a database 4-1
Tutorial: Connecting to a database using the

JDataStore JDBC driver 4-2
Adding a Database component to your

application. 4-3
Setting Database connection properties . . . 4-4

Tutorial: Connecting to a database using
InterClient JDBC drivers 4-6

Common connection error messages. 4-9
Using the Database component in your

application . 4-9
Prompting for user name and password 4-9

Pooling JDBC connections 4-10
Optimizing performance of

JConnectionPool 4-12
Logging output 4-12
Example . 4-13

Chapter 5
Retrieving data from a data source 5-1
When to use JDataStore vs. JDBC drivers 5-2
Overview of the DataExpress components. . . . 5-2
Tutorial: An introduction to JBuilder

database applications 5-4
Creating the application structure 5-5
Adding DataExpress components to your

application 5-7
Setting properties to connect the

components 5-8
Creating a user interface 5-9
Connecting the DataExpress component

to a UI component 5-12
Compiling, running, and debugging your

application 5-12
Summary . 5-13

Querying a database 5-14
Tutorial: Querying a database using the

JBuilder UI . 5-16
Retrieving data by querying a database . . 5-16
Creating the UI 5-18
Setting properties in the query dialog. . . . 5-19

The Query page 5-20
The Parameters page 5-21
Place SQL text in resource bundle 5-22

Querying a database: Hints & tips. 5-24
Enhancing data set performance 5-24
Persisting query metadata 5-25
Opening and closing data sets 5-26
Ensuring that a query is updateable . . . 5-26

Using parameterized queries to obtain
data from your database 5-27

Tutorial: Parameterizing a query 5-27
Creating the application. 5-28
Adding a Parameter Row 5-28
Adding a QueryDataSet. 5-29
Add the UI components. 5-30

Contents

ii

Parameterized queries: Hints & tips 5-33
Using parameters. 5-33
Re-executing the parameterized query

with new parameters. 5-35
Parameterized queries in master-detail

relationships. 5-35

Chapter 6
Using stored procedures 6-1
Tutorial: Retrieving data using stored

procedures . 6-3
Creating tables and procedures for

the tutorial. 6-3
Adding the DataSet components 6-4
Adding visual components 6-5

Stored procedures: Hints & tips 6-6
Discussion of stored procedure escape

sequences, SQL statements, and
server-specific procedure calls 6-7

Creating tables and procedures for
the tutorial manually 6-8

Stored procedures: InterBase, Oracle,
and Sybase specific information 6-10

Example: Using InterBase stored
procedures. 6-10

Example: Using parameters with
Oracle PL/SQL stored procedures 6-10

Using Sybase stored procedures 6-11
Browsing sample applications that

use stored procedures 6-12
Writing a custom data provider 6-12

Obtaining metadata 6-13
Invoking initData 6-14

Obtaining actual data 6-14
Tips on designing a custom data

provider 6-15
Understanding the provideData

method in master-detail data sets 6-15

Chapter 7
Working with columns 7-1
Understanding Column properties and
metadata . 7-1

Non-metadata Column properties 7-2
Viewing column information in the

Column designer 7-2
The Generate RowIterator Class button . . . 7-3

Using the Column designer to persist
metadata . 7-4

Making metadata dynamic using the
Column designer 7-4

Viewing column information in the Database
Pilot . 7-5

Optimizing a query 7-6
Setting column properties 7-6
Persistent columns 7-7
Combining live metadata with persistent

columns. . 7-8
Removing persistent columns 7-8

Using persistent columns to add empty
columns to a DataSet 7-9

Controlling column order in a DataSet . . . 7-10

Chapter 8
Saving changes back to your
data source 8-1

Saving changes from a QueryDataSet 8-2
Tutorial: Adding a button to save

changes from a QueryDataSet 8-3
Saving changes back to your data source

with a stored procedure 8-5
Tutorial: Saving changes using a

QueryResolver 8-6
Coding stored procedures to handle data

resolution . 8-8
Tutorial: Saving changes with a

ProcedureResolver. 8-9
Example: Using InterBase stored

procedures with return parameters 8-11
Resolving data from multiple tables 8-11

Considerations for the type of linkage
between tables in the query 8-12

Table and column references (aliases)
in a query string 8-13

Controlling the setting of the column
properties 8-13

What if a table is not updateable? 8-13
How can the user specify that a table

should never be updated? 8-14
Using DataSets with RMI (streamable

data sets) . 8-14
Example: Using streamable data sets 8-14
Using streamable DataSet methods 8-15

iii

Customizing the default resolver logic 8-16
Understanding default resolving 8-17

Adding a QueryResolver component . . 8-17
Intercepting resolver events 8-17
Using resolver events. 8-19

Writing a custom data resolver 8-20
Handling resolver errors 8-21
Resolving master-detail relationships . . 8-21

Chapter 9
Establishing a master-detail
relationship 9-1

Defining a master-detail relationship 9-2
Fetching details. 9-3

Fetching all details at once 9-3
Fetching selected detail records on

demand . 9-3
Editing data in master-detail data sets. 9-4
Steps to creating a master-detail relationship. . 9-5
Tutorial: Creating a master-detail

relationship . 9-6
Saving changes in a master-detail

relationship . 9-10
Resolving master-detail data sets to

a JDBC data source 9-11

Chapter 10
Importing and exporting data
from a text file 10-1

Tutorial: Importing data from a text file 10-2
Adding columns to a TableDataSet in

the editor . 10-4
Importing formatted data from a text file 10-4
Retrieving data from a JDBC data source 10-5
Exporting data 10-5

Tutorial: Exporting data to a text file 10-6
Tutorial: Using patterns for exporting

numeric, date/time, and text fields. 10-8
Exporting data from a QueryDataSet

to a text file 10-10
Saving changes from a TableDataSet to

a SQL table 10-10
Saving changes loaded from a

TextDataFile to a JDBC data source. . . . 10-11

Chapter 11
Using data modules to simplify
data access 11-1

Creating a data module using the
design tools 11-2

Create the data module with the
wizard. 11-2

Add data components to the data
module . 11-3

Adding business logic to the data
module . 11-4

Using a data module 11-5
Adding a required library to a project . . 11-5
Referencing a data module in your

application 11-6
Understanding the Use Data

Module dialog 11-7
Creating data modules using the

Data Modeler 11-8
Creating queries with the Data Modeler . . 11-8

Opening a URL. 11-9
Beginning a query11-10
Adding a Group By clause 11-12
Selecting rows with unique

column values 11-13
Adding a Where clause 11-13
Adding an Order By clause11-14
Editing the query directly. 11-15
Testing your query. 11-15
Building multiple queries11-16
Specifying a master-detail

relationship11-16
Saving your queries 11-17

Generating database applications11-18
Using a generated data module in

your code11-19

Chapter 12
Persisting and storing data
in a DataStore 12-1

When to use a DataStore 12-1
Using the DataStore Explorer 12-2
DataStore operations 12-3

iv

Chapter 13
Filtering, sorting, and locating
data 13-1

Retrieving data for the tutorials 13-2
Filtering data . 13-5

Tutorial: Adding and removing filters 13-6
Sorting data. . 13-9

Sorting data in a JdbTable 13-9
Sorting data using the JBuilder visual

design tools 13-10
Understanding sorting and indexing . . 13-12

Sorting data in code 13-13
Locating data 13-14

Locating data with a JdbNavField 13-14
Locating data programmatically 13-16
Locating data using a DataRow. 13-17
Working with locate options 13-17
Locates that handle any data type 13-19
Column order in the DataRow and

DataSet. 13-19

Chapter 14
Adding functionality to
database applications 14-1

Creating lookups. 14-2
Tutorial: Data entry with a picklist 14-3
Removing a picklist field 14-4
Tutorial: Creating a lookup using a

calculated column 14-5
Using calculated columns. 14-7

Tutorial: Creating a calculated column
in the designer 14-8

Aggregating data with calculated fields . . 14-10
Tutorial: Aggregating data with

calculated fields. 14-11
Setting properties in the AggDescriptor . . 14-14
Creating a custom aggregation event

handler. 14-15
Adding an Edit or Display Pattern for data

formatting. 14-15
Display masks 14-17
Edit masks. 14-17
Using masks for importing and

exporting data. 14-17

Data type dependent patterns 14-18
Patterns for numeric data 14-18
Patterns for date and time data. 14-19
Patterns for string data 14-20
Patterns for boolean data 14-21

Presenting an alternate view of the data . . . 14-22
Ensuring data persistence 14-23

Making columns persistent. 14-24
Using variant data types 14-26

Storing Java objects 14-26

Chapter 15
Creating a user interface using
dbSwing components 15-1

Tutorial: Using dbSwing components to
create a database application UI 15-2

Blocking editing in JdbTable 15-5

Chapter 16
Using other controls and events 16-1
Synchronizing visual components 16-1
Accessing data and model information

from a UI component 16-2
Displaying status information 16-2

Building an application with a
JdbStatusLabel component 16-3

Running the JdbStatusLabel application . . 16-4
Handling errors and exceptions 16-4

Overriding default DataSetException
handling on controls 16-5

Chapter 17
Creating a distributed database
application using DataSetData 17-1

Understanding the sample distributed
database application (using Java RMI and
DataSetData) 17-2

Setting up the sample application 17-3
What is going on? 17-3
Passing metadata by DataSetData 17-4
Deploying the application on 3-tiers. . . 17-4
For more information 17-5

v

Chapter 18
Database administration tasks 18-1
Exploring database tables and metadata

using the Database Pilot 18-1
Browsing database schema objects 18-2
Setting up drivers to access remote

and local databases 18-3
Executing SQL statements. 18-4
Using the Explorer to view and edit

table data 18-5
Using the Database Pilot for database

administration tasks 18-7
Creating the SQL data source 18-7
Populating a SQL table with data using

JBuilder . 18-9
Deleting tables in JBuilder. 18-9

Monitoring database connections 18-9
Understanding the JDBC Monitor user

interface 18-10

Using the JDBC Monitor in a running
application 18-10

Adding the MonitorButton to the
Palette18-11

Using the MonitorButton Class from
code .18-11

Understanding MonitorButton
properties18-11

Chapter 19
Sample database application 19-1
Sample international database application. . . 19-2

Appendix A
Database FAQ A-1

Index I-1

vi

Tutorial: Connecting to a database using the
JDataStore JDBC driver 4-2

Tutorial: Connecting to a database using
InterClient. 4-6

Tutorial: An introduction to JBuilder database
applications . 5-4

Tutorial: Querying a database using the
JBuilder UI . 5-16

Tutorial: Parameterizing a query 5-27
Tutorial: Retrieving data using stored

procedures . 6-3
Tutorial: Adding a button to save changes

from a QueryDataSet 8-3
Tutorial: Saving changes using a

QueryResolver 8-6
Tutorial: Saving changes with a

ProcedureResolver 8-9

Tutorial: Creating a master-detail
relationship . 9-6

Tutorial: Importing data from a text file 10-2
Tutorial: Exporting data to a text file 10-6
Tutorial: Using patterns for exporting

numeric, date/time, and text fields 10-8
Tutorial: Adding and removing filters 13-6
Tutorial: Data entry with a picklist 14-3
Tutorial: Creating a lookup using a

calculated column. 14-5
Tutorial: Creating a calculated column in

the designer 14-8
Tutorial: Aggregating data with calculated

fields .14-11
Tutorial: Using dbSwing components to

create a database application UI 15-2

Tutorials

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

Database application
development is a feature
of JBuilder Professional

and Enterprise.

Distributed application
development is a feature

of JBuilder Enterprise.

The Database Application Developer’s Guide provides information on using
JBuilder’s DataExpress database functionality to develop database
applications. It also explains using dbSwing components to create a user
interface (UI) for your application.

Basic features that are commonly included in a database application are
explained by example so you can learn by doing. Conceptual information
is provided, followed with examples as applicable, with cross-references
to more detailed information wherever possible.

Be sure to check for documentation additions and updates at
http://www.borland.com/techpubs/jbuilder. Also, check the JBuilder
online help. The information in the online help is more up-to-date than the
printed material.

If you have questions about creating database applications using JBuilder,
visit the database newsgroup at
news://forums.borland.com/borland.public.jbuilder.database. This
newsgroup is dedicated to issues about writing database applications in
JBuilder and is actively monitored by our support engineers as well as the
JBuilder Development team. For discussions about dbSwing components,
borland.public.jbuilder.dbSwing newsgroup is a good source for getting
help creating database application UIs. A helpful DataExpress FAQ is
currently located on the Borland Community Web site from
http://community.borland.com/.

Note All versions of JBuilder provide direct access to SQL data through the
java.sun JDBC API. Some versions of JBuilder provide additional
DataExpress components (on the DataExpress tab of the component
palette) that greatly simplify development of database applications, as
described in this book.

1-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

I n t r o d u c t i o n

Most of the sample applications and tutorials described in this book use
sample data that is stored in a JDataStore and is accessed through a JDBC
driver. The JDataStore component provides a replacement for
MemoryStore that provides a permanent storage of data. JDataStore can
be treated like any SQL database - you can connect to it as you would to
any server, run SQL queries against it, etc. For more information on
JDataStore, see the JDataStore Developer’s Guide.

For definitions of any unfamiliar Java terms, see “Java glossaries” in Part I,
“Quick Start” of Learning Java with JBuilder.

To create a database application in JBuilder, you need to:

• Understand JBuilder’s DataExpress architecture.

Chapter 2, “Understanding JBuilder database applications” introduces
the DataExpress architecture, describes JBuilder’s set-oriented
approach to handling data, and provides an overview of the main data
components in the DataExpress package.

• Set up JBuilder for database applications.

Chapter 3, “Setting up JBuilder for database applications” provides the
setup information required to step through and run the sample
applications referenced in this manual. This includes JBuilder setup for
access of sample data using JDataStore JDBC driver and JBuilder
sample files.

• Connect to a database.

Chapter 4, “Connecting to a database” describes how to connect your
database components to a server.

• Retrieve data from a server.

Chapter 5, “Retrieving data from a data source” describes how to create
a local copy of the data from your data source, and which DataExpress
package components to use. This phase (called providing) makes the
data available to your application.

For most applications, you will want to use a data module to hold the
DataExpress package components. Chapter 11, “Using data modules to
simplify data access” describes how to use data modules to simplify
data access in your applications, while at the same time standardizing
database logic and business rules for all developers accessing the data.

Chapter 7, “Working with columns” describes how to make columns
persistent, how to control the appearance and editing of column data,
how to obtain metadata information, how to add a column to a data set,
and how to define the order of display of columns.

Chapter 10, “Importing and exporting data from a text file” explains
how to provide data to your application from a text file, and how to
save the data back to a text file or to a SQL data source.

I n t r o d u c t i o n 1-3

I n t r o d u c t i o n

• Decide how to store your data.

Chapter 12, “Persisting and storing data in a DataStore” discusses
using JDataStore components for organizing an application’s
StorageDataSet’s, files, and serialized JavaBeans/Objects states into a
single, all Java, portable, compact, high-performance, persistent storage
mechanism. For information beyond the scope of this book, see the
JDataStore Developer’s Guide.

• Save changes to your data.

Chapter 8, “Saving changes back to your data source” describes how to
save the data updates made by your JBuilder application back to the
data source (a process called resolving).

Chapter 10, “Importing and exporting data from a text file” explains
how to provide data to your application from a text file, and to save the
data back to a text file or to a SQL data source.

• Manipulate your data.

These chapters describe features that enhance database applications,
and how to use the features.

• Chapter 9, “Establishing a master-detail relationship” provides
information on linking two or more data sets to create a parent/child
(or master-detail) relationship.

• Chapter 13, “Filtering, sorting, and locating data” explains the
differences between these features, and provides a tutorial for each
as well.

• Chapter 14, “Adding functionality to database applications” includes

• formatting and parsing data with edit or display patterns
• creating calculated columns
• aggregating data (minimum, maximum, sum, count)
• creating a lookup field
• creating an alternate view of the data
• creating persistent, or pre-defined, fields

• Chapter 15, “Creating a user interface using dbSwing components”
shows how to use dbSwing components to create a user interface for
your application.

• Chapter 18, “Database administration tasks” includes such common
database tasks as

• Browsing and editing data, tables, and database schema using the
Database Pilot

• Creating and deleting tables
• Populating tables with data
• Monitoring JDBC traffic using the JDBC Monitor
• handling errors and exceptions in your application

1-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

I n t r o d u c t i o n

To aid in your understanding of database applications, you may also wish to:

• View a sample database application.

Chapter 19, “Sample database application” consists of a complete
sample database application that ties in individual features described
in greater detail in the previous chapters. Run this application to see
various DataExpress package database features in action.

Chapter 17, “Creating a distributed database application using
DataSetData” discusses using DataExpress components in a distributed
object computing environment (using Java RMI).

For deploying database applications, you may wish to consider using:

• Servlets

Servlets are server-side versions of applets, or a server-side Java
program that is initiated when certain HTML is encountered. This
section describes how to create a servlet in JBuilder, provides a tutorial
for practice, and provides links to sample servlets on other web sites.
See “Working with Servlets” in Web Application Developer’s Guide for
more information.

• JavaServer Pages (JSP).

JavaServer Pages (JSP) technology provides an easy and powerful way
to build web pages with dynamically-generated content. JSP
technology is created using HTML-like tags and scriptlets written in
Java. Standard HTML or XML commands handle formatting and
design. This section describes how to create a JavaServer Page in
JBuilder, including a tutorial for practice. See “Developing JavaServer
Pages” in Web Application Developer’s Guide for more information.

A document on the Borland web site contains questions and answers
culled from the JBuilder database newsgroup. See Appendix A, “Database
FAQ” for information on accessing both this document and the
newsgroup.

I n t r o d u c t i o n 1-5

D o c u m e n t a t i o n c o n v e n t i o n s

Documentation conventions
The Borland printed documentation for JBuilder uses the typefaces and
symbols described in the table below to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Monospace type Monospaced type represents the following:
• text as it appears onscreen
• anything you must type, such as “Enter Hello World in the Title

field of the Application wizard.”
• file names
• path names
• directory and folder names
• commands, such as SET PATH, CLASSPATH
• Java code
• Java identifiers, such as names of variables, classes, interfaces,

components, properties, methods, and events
• package names
• argument names
• field names
• Java keywords, such as void and static

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj (Borland
Compiler for Java), and compiler options. For example: javac, bmj,
-classpath.

Italics Italicized words are used for new terms being defined and for book
titles.

Keycaps This typeface indicates a key on your keyboard. For example, “Press
Esc to exit a menu.”

[] Square brackets in text or syntax listings enclose optional items. Do
not type the brackets.

< > Angle brackets in text or syntax listings indicate a variable string;
type in a string appropriate for your code. Do not type the angle
brackets. Angle brackets are also used for HTML tags.

... An ellipsis in syntax listing indicates code that is missing from the
example.

1-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

D o c u m e n t a t i o n c o n v e n t i o n s

JBuilder is available on multiple platforms. See the table below for a
description of platform and directory conventions used in the
documentation.

Table 1.2 Platform conventions and directories

Item Meaning

Paths All paths in the documentation are indicated with a forward
slash (/).
For the Windows platform, use a backslash (\).

Home directory The location of the home directory varies by platform.
• For UNIX and Linux, the home directory can vary. For

example, it could be /user/[username] or /home/[username]
• For Windows 95/98, the home directory is C:\Windows
• For Windows NT, the home directory is C:\Winnt\Profiles\

[username]

.jbuilder directory The .jbuilder directory, where JBuilder settings are stored, is
located in the home directory.

jbproject directory The jbproject directory, which contains project, class, and
source files, is located in the home directory. JBuilder saves files
to this default path.

Screen shots Screen shots reflect JBuilder’s Metal Look & Feel on various
platforms.

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s 2-1

C h a p t e r

2
Chapter2Understanding JBuilder

database applications
Database application

development is a feature
of JBuilder Professional

and Enterprise.

Distributed application
development is a feature

of JBuilder Enterprise.

A database application is any application that accesses stored data and
allows you to view and perhaps modify or manipulate that data. In most
cases, the data is stored in a database. However, data can also be stored in
files as text, or in some other format. JBuilder allows you to access this
information and manipulate it using properties, methods, and events
defined in the DataSet packages of the DataExpress Component Library in
conjunction with the dbSwing package.

A database application that requests information from a data source such
as a database is known as a client application. A DBMS (Database
Management System) that handles data requests from various clients is
known as a database server.

JBuilder’s DataExpress architecture is focused on building all-Java
client-server applications, applets, servlets, and JavaServer Pages (JSP) for
the inter- or intranet. Because applications you build in JBuilder are
all-Java at run time, they are cross-platform.

JBuilder applications communicate with database servers through the
JDBC API, the Sun database connectivity specification. JDBC is the all-Java
industry standard API for accessing and manipulating database data.
JBuilder database applications can connect to any database that has a
JDBC driver.

2-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s

The following diagram illustrates a typical database application and the
layers from the client JBuilder DataExpress database application to the data
source:

The major components in a database application are:

• DataSet

DataSet is an abstract class. A large amount of the public API for all
DataSets is surfaced in this class. All navigation, data access, and update
APIs for a DataSet are surfaced in this class. Support for master-detail
relationships, row ordering, and row filtering are surfaced in this class.
Some of the dbSwing data-aware components have a dataSet property.
This means that a JdbTable, for example, can have its dataSet property
set to the various extensions of DataSet: DataSetView, QueryDataSet,
ProcedureDataSet, and TableDataSet.

• StorageDataSet

StorageDataSet can use in-memory storage (MemoryStore) to cache its data.
The StorageDataSet store property can also be set to a DataStore
component to provide persistence for the DataSet data. The
StorageDataSet manages the storage of DataSet data, indexes used to

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s 2-3

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s

maintain varying views of the data, and persistent Column state. All
structural APIs (add/delete/change/move column) are surfaced in
this class. Since StorageDataSets manage the data, it is where all row
updates, inserts, and deletes are automatically recorded. Since all
changes to the StorageDataSet are tracked, we know exactly what needs
to be done to save (resolve) these changes back to the data source
during a resolution operation.

• DataStore

The DataStore component provides high performance data caching and
compact persistence for DataExpress DataSets, arbitrary files, and Java
Objects. The DataStore component uses a single file to store one or more
data streams. A DataStore file has a hierarchical directory structure that
associates a name and directory status with a particular data stream.

• DataSetView

This component can be used to provide independent navigation (a
cursor) with row ordering and filtering different than that used by the
base DataSet. To use this component, set the storageDataSet property of
the DataSetView component. Use this component when multiple
components need to dynamically switch to a new DataSet. The
components can all be wired to the same DataSetView. To force them all
to view a new DataSet, the DataSetView storageDataSet property can be
changed.

• QueryDataSet

This is a JDBC specific DataSet. It manages a JDBC provider of data. The
data to be provided is specified in a query property. The query property
specifies a SQL statement.

• ProcedureDataSet

This is a JDBC specific DataSet. It manages a JDBC provider of data. The
data to be provided is provided with a procedure property. The procedure
property specifies a stored procedure.

• TableDataSet

This is a generic DataSet component without a built-in provider
mechanism. Even though it has no default provider, it can be used to
resolve its changes back to a data source. Column and data can be added
to a TableDataSet through DataSet methods or by importing data with a
DataFile component (like TextDataFile).

The Row classes are used extensively in the DataExpress APIs. The ReadRow
and ReadWriteRow are used much like interfaces that indicate the usage
intent. By using a class hierarchy, implementation is shared, and there is a
slight performance advantage over using interfaces.

2-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g J B u i l d e r ’ s D a t a E x p r e s s a r c h i t e c t u r e

The class hierarchy associated with the DataSet methods is as follows:

java.lang.Object
 +----com.borland.dx.dataset.ReadRow
 +----com.borland.dx.dataset.ReadWriteRow
 +----com.borland.dx.dataset.DataSet
 +----com.borland.dx.dataset.StorageDataSet
 +----com.borland.dx.sql.dataset.QueryDataSet

• StorageDataSet methods deal with data set structure

• DataSet methods handle navigation

• ReadWriteRow methods let you edit columns in the current row

• ReadRow methods give read access to columns in the current row

• TableDataSet and QueryDataSet inherit all these methods

The next section, entitled “Understanding JBuilder’s DataExpress
architecture,” discusses the components of the DataExpress architecture in
more detail.

Understanding JBuilder’s DataExpress architecture
DataExpress components were designed to be modular to allow the
separation of key functionality. This design allows the DataExpress
components to handle a broad variety of applications. Modular aspects of
the DataExpress architecture include:

• Core DataSet functionality

This is a collection of data handling functionality available to
applications using DataExpress. Much of this functionality can be
applied using declarative property and event settings. Functionality
includes navigation, data access/update, ordering/filtering of data,
master-detail support, lookups, constraints, defaults, etc.

• Data source independence

The retrieval and update of data from a data source, such as an Oracle or
Sybase server, is isolated to two key interfaces: Provider/Resolver. By
cleanly isolating the retrieval and updating of data, it is easy to create new
Provider/Resolver components for new data sources. There are two
Provider/Resolver implementations for standard JDBC drivers that
provide access to databases such as Oracle, Sybase, Informix, InterBase,
DB2, MS SQL Server, Paradox, dBase, FoxPro, Access, and other
databases. You can also create custom Provider/Resolver component
implementations for EJB, application servers, SAP, BAAN, IMS, CICS, etc.

• Pluggable storage

When data is retrieved from a Provider it is cached inside the DataSet.
All edits made to the cached DataSet are tracked so that Resolver
implementations know what needs to be updated back to the data

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s 2-5

U n d e r s t a n d i n g J B u i l d e r ’ s D a t a E x p r e s s a r c h i t e c t u r e

source. DataExpress provides two options for this caching storage:
MemoryStore (the default), and DataStore.

MemoryStore caches all data and data edits in memory. DataStore uses an
all Java, small footprint, high performance, embeddable database to
cache data and data edits. The DataStore is ideally suited for
disconnected/mobile computing, asynchronous data replication, and
small footprint database applications.

• Data binding support for visual components

DataExpress DataSet components provide an powerful programmatic
interface, as well as support for direct data binding to data-aware
components by way of point and click property settings made in a
visual designer. JBuilder ships with Swing-based visual components
that bind directly to DataSet components.

The benefits of using the modular DataExpress Architecture include:

• Network computing

As mentioned, the Provider/Resolver approach isolates interactions with
arbitrary data sources to two clean points. There are two other benefits
to this approach:

• The Provider/Resolver can be easily partitioned to a middle tier. Since
Provider/Resolver logic typically has a transactional nature, it is ideal
for partitioning to a middle tier.

• It is a “stateless” computing model that is ideally suited to network
computing. The connection between the DataSet component client
and the data source can be disconnected after providing. When
changes need to be saved back to the data source, the connection
need only be re-established for the duration of the resolving
transaction.

• Rapid development of user interfaces

Since DataSets can be bound to data-aware components with a simple
property setting, they are ideally suited for rapidly building database
application user interfaces.

• Mobile computing

With the introduction of the DataStore component, DataExpress
applications have a persistent, portable database. The DataStore can
contain multiple DataSets, arbitrary files, and Java Objects. This allows a
complete application state to be persisted in a single file. DataSet
components have built-in data replication technology for saving and
reconciling edits made to replicated data back to a data source.

2-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T h e B o r l a n d d a t a b a s e - r e l a t e d p a c k a g e s

• Embedded applications

The small footprint, high performance DataStore database is ideal for
embedded applications and supports the full functionality and
semantics of the DataSet component.

For more information on the DataExpress architecture, visit the Borland web
site at http://www.borland.com/jbuilder/ for a white paper on this topic.

The Borland database-related packages
The core functionality required for data connectivity is contained in the
com.borland.dx.dataset, com.borland.dx.sql.dataset, and
com.borland.datastore packages. The components in these packages
encapsulate both the connection between the application and its source of
the data, as well as the behavior needed to manipulate the data. The
features provided by these packages include that of database connectivity
as well as data set functionality.

The main classes and components in the Borland database-related
packages are listed in the table below, along with a brief description of the
component or class. The right-most column of this table lists frequently
used properties of the class or component. Some properties are themselves
objects that group multiple properties. These complex property objects
end with the word Descriptor and contain key properties that (typically)
must be set for the component to be usable.

Component/Class Description Frequently used properties

Database A required component when accessing data
stored on a remote server, the Database
component manages the JDBC connection to the
SQL server database.
See Chapter 4, “Connecting to a database” for more
description and a tutorial using this component.

The ConnectionDescriptor object stores
connection properties of driver, URL,
user name, and password. Accessed
using the connection property.

DataSet An abstract class that provides basic data set
behavior, DataSet also provides the infrastructure
for data storage by maintaining a
two-dimensional array that is organized by rows
and columns. It has the concept of a current row
position, which allows you to navigate through
the rows of data and manages a “pseudo record”
that holds the current new or edited record until
it is posted into the DataSet. Because it extends
ReadWriteRow, DataSet has methods to get and put
field values.

The SortDescriptor object contains
properties that affect the order in
which data is accessed and displayed
in a UI component. Set using the sort
property. See “Sorting data” on
page 13-9 for a tutorial.
The MasterLinkDescriptor object
contains properties for managing
master-detail relationships between
two DataSet components. Accessed
using the masterLink property on the
detail DataSet. See Chapter 9,
“Establishing a master-detail
relationship” for a tutorial.

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s 2-7

T h e B o r l a n d d a t a b a s e - r e l a t e d p a c k a g e s

StorageDataSet A class that extends DataSet by providing
implementation for storage of the data and
manipulation of the structure of the DataSet.
You fill a StorageDataSet component with data by
extracting information from a remote database
(such as InterBase or Oracle), or by importing
data stored in a text file. This is done by
instantiating one of its subclasses: QueryDataSet,
ProcedureDataSet, or TableDataSet.

The tableName property specifies the
data source of the StorageDataSet
component.
The maxRows property defines the
maximum number of rows that the
DataSet can initially contain.
The readOnly property controls
write-access to the data.

DataStore The DataStore component provides a replacement
for MemoryStore that gives a permanent storage of
data. A DataStore provides high performance data
caching and compact persistence for DataExpress
DataSets, arbitrary files, and Java Objects. The
DataStore component uses a single file to store one
or more data streams. A DataStore file has a
hierarchical directory structure that associates a
name and directory status with a particular data
stream. DataStore can be treated like any SQL
database - you can connect to it as you would to
any server, run SQL queries against it, etc.
See Chapter 12, “Persisting and storing data
in a DataStore,” and the JDataStore Developer’s
Guide, for more description of the DataStore
component.

Caching and persisting
StorageDataSets in a DataStore is
accomplished through two required
property settings on a StorageDataSet
called store and storeName. By default,
all StorageDataSets use a MemoryStore if
the store property is not set.
Currently MemoryStore and DataStore
are the only implementations for the
store property. The storeName
property is the unique name
associated with this StorageDataSet in
the DataStore.

DataStoreDriver DataStoreDriver is the JDBC driver for the
DataStore. The driver supports both local and
remote access. Both types of access require a user
name (any string, with no setup required) and an
empty password.

QueryDataSet The QueryDataSet component stores the results of a
query string executed against a server database.
This component works with the Database
component to connect to SQL server databases,
and runs the specified query with parameters (if
any). Once the resulting data is stored in the
QueryDataSet component, you can manipulate the
data using the DataSet API.
See “Querying a database” on page 5-14 for more
description and a tutorial using this component.

The QueryDescriptor object contains
the SQL query statement, query
parameters, and database connection
information. Accessed using the query
property.

ProcedureDataSet The ProcedureDataSet component holds the results
of a stored procedure executed against a server
database. This component works with the
Database component in a manner similar to the
QueryDataSet component.
See Chapter 6, “Using stored procedures” for
more description and a tutorial using this
component.

The ProcedureDescriptor object
contains the SQL statement,
parameters, database component,
and other properties. Accessed using
the procedure property of the
ProcedureDataSet component.

Component/Class Description Frequently used properties

2-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T h e B o r l a n d d a t a b a s e - r e l a t e d p a c k a g e s

TableDataSet Use this component when importing data from a
text file. This component extends the DataSet
class. It mimics SQL server functionality, without
requiring a SQL server connection.
See Chapter 10, “Importing and exporting data
from a text file” for more description and a
tutorial using this component.

The (inherited) dataFile property
specifies the file name from which to
load data into the DataSet and to save
the data to.

DataSetView This component presents an alternate “view” of
the data in an existing StorageDataSet. It has its
own (inherited) sort property, which, if given a
new value, allows a different ordered
presentation of the data. It also has filtering and
navigation capabilities that are independent of its
associated StorageDataSet.
See “Presenting an alternate view of the data” on
page 14-22 for more description and a tutorial
using this component.

The storageDataSet property indicates
the component which contains the
data of which the DataSetView presents
a view.

Column A Column represents the collection from all rows of
a particular item of data, for example, all the Name
values in a table. A Column gets its value when a
DataSet is instantiated or as the result of a
calculation.
The Column is managed by its StorageDataSet
component.
See Chapter 7, “Working with columns” for more
description and a tutorial using this component.

You can conveniently set properties
at the Column level so that settings
which affect the entire column of data
can be set at one place, for example,
font. JBuilder design tools include
access to column-level properties by
double-clicking any StorageDataSet in
the content pane, then selecting the
Column that you want to work with.
The selected Column component’s
properties and events display in
either the Column designer
(properties only) or in the Inspector
and can be edited in either place.

DataRow The DataRow component is a collection of all Column
data for a single row where each row is a
complete record of information. The DataRow
component uses the same columns of the DataSet
it was constructed with. The names of the
columns in a DataRow are field names.
A DataRow is convenient to work with when
comparing the data in two rows or when locating
data in a DataSet. It can be used in all DataSet
methods that require a ReadRow or ReadWriteRow.

Component/Class Description Frequently used properties

U n d e r s t a n d i n g J B u i l d e r d a t a b a s e a p p l i c a t i o n s 2-9

T h e B o r l a n d d a t a b a s e - r e l a t e d p a c k a g e s

There are many other classes and components in the
com.borland.dx.dataset, com.borland.dx.sql.dataset, and
com.borland.datastore packages as well as several support classes in other
packages such as the util and view packages. Detailed information on the
packages and classes of DataExpress Library can be found in the
DataExpress Component Library Reference documentation.

ParameterRow The ParameterRow component has a Column for each
column of the associated data set that you may
want to query. Place values you want the query
to use in the ParameterRow and associate them with
the query by their parameter names (which are
the ParameterRow column names).
See “Using parameterized queries to obtain data
from your database” on page 5-27 for more
description and a tutorial using this component.

DataModule The DataModule is an interface in the
com.borland.dx.dataset package. A class that
implements DataModule will be recognized by the
JBuilder designer as a class that contains various
dataset components grouped into a data model.
You create a new, empty data module by
selecting the Data Module icon from the File|
New dialog. Then using the component palette
and content pane, you place into it various
DataSet objects, and provide connections, queries,
sorts, and custom business rules logic. Data
modules simplify reuse and multiple use of
collections of DataSet components. For example,
one or more UI classes in your application can
use a shared instance of your custom DataModule.
See Chapter 11, “Using data modules to simplify
data access” for more description and a tutorial
using this component.

Component/Class Description Frequently used properties

2-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S e t t i n g u p J B u i l d e r f o r d a t a b a s e a p p l i c a t i o n s 3-1

C h a p t e r

3
Chapter3Setting up JBuilder for

database applications
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

If you downloaded
JBuilder, you also need to

download the Samples
Pack in order to have the
samples. Note that some

samples only work with
JBuilder Enterprise.

To operate the database tutorials included in this book, you’ll need to
install the JDataStore JDBC driver and/or the InterClient JDBC driver. This
topic discusses setting up JDataStore and InterClient for use in the
tutorials. See “Adding a JDBC driver to JBuilder” on page 3-7.

Sun worked in conjunction with database and database tool vendors to
create a DBMS independent API. Like ODBC (Microsoft’s rough
equivalent to JDBC), JDBC is based on the X/Open SQL Call Level
Interface (CLI). Some of the differences between JDBC and ODBC are:

• JDBC is an all Java API that is truly cross platform. ODBC is a C
language interface that must be implemented natively. Most
implementations run only on Microsoft platforms.

• Most ODBC drivers require installation of a complex set of code
modules and registry settings on client workstations. JDBC is all Java
implementation that can be executed directly from a local or centralized
remote server. JDBC allows for much simpler maintenance and
deployment than ODBC.

JDBC is endorsed by leading database, connectivity, and tools vendors
including Oracle, Sybase, Informix, InterBase, DB2. Several vendors,
including Borland, have JDBC drivers. Existing ODBC drivers can be
utilized by way of the JDBC-ODBC bridge provided by Sun. Using the
JDBC-ODBC bridge is not an ideal solution since it requires the
installation of ODBC drivers and registry entries. ODBC drivers are also
implemented natively which compromises cross-platform support and
applet security.

3-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o d a t a b a s e s

JBuilder DataExpress components are implemented using the Sun
database connectivity (JDBC) Application Programmer Interface (API). To
create a Java data application, the Sun JDBC sql package must be
accessible before you can start creating your data application. If your
connection to your database server is through an ODBC driver, you also
need the Sun JDBC-ODBC bridge software.

For more information about JDBC or the JDBC-ODBC bridge, visit the JDBC
Database Access API web site at http://java.sun.com/products/jdbc/.

Connecting to databases
You can connect JBuilder applications to remote or local SQL databases, or
to databases created with other Borland applications such as C++ Builder
or Delphi.

To connect to a remote SQL database, you need either of the following:

• A JDBC driver for your server. Some versions of JBuilder include JDBC
drivers. One of these drivers is InterClient. Check the Borland web site
(http://www.borland.com/jbuilder/) for availability of JDBC drivers
in your edition of JBuilder or contact the technical support department
of your server software company for availability of JDBC drivers.

• An ODBC-based driver for your server that you use with the
JDBC-ODBC bridge software.

Note The ODBC driver is a non-portable DLL. This is sufficient for local
development, but won’t work for applets or other all-Java solutions.

When connecting to local, non-SQL databases such as Paradox or Visual
dBASE, use an ODBC driver appropriate for the table type and level you
are accessing in conjunction with the JDBC-ODBC bridge software.

JBuilder sample files
The JBuilder/samples directory contains files for various tutorials and
examples presented in this manual. The DataExpress sample files are
located in the /samples/DataExpress/ subdirectory of your JBuilder
installation.

Note If you downloaded JBuilder, you also need to download the Samples Pack
in order to have the samples. Note that some samples only work with
JBuilder Enterprise.

The database sample applications contain samples that access data from a
DataStore, employee.jds, and from the InterBase sample database
employee.gdb. For more information on DataStore, see JDataStore

S e t t i n g u p J B u i l d e r f o r d a t a b a s e a p p l i c a t i o n s 3-3

J B u i l d e r s a m p l e f i l e s

Developer’s Guide. For more information on InterBase Server, refer to its
on-line documentation.

If you wish to examine the sample applications in the JBuilder designer,
please note that you should build the project for each sample before
bringing it into the designer. To do this, select Project|Rebuild Project.

Note for Unix users

If you install JBuilder as ‘root’, but run JBuilder under your normal user
account, you will not be able to run any of the samples directly from the
JBuilder samples directory. Attempting to do so will result in a
compile-time error, Error #: 914: unable to write to output directory.

In order to run a sample project, you must have read/write access to all
files and directories created or used by the sample. In general, if you only
have read-only access to the JBuilder samples subdirectory, you will need
to copy the samples into a directory in which you have read/write access
to run the samples. Because some samples require files (e.g., databases) in
other subdirectories of the samples directory, it is recommended that you
make your own copy of the entire samples tree, if possible. Samples which
try to access files in other samples directories write a message indicating
the directory in which they expect to find a file.

In order to run the samples in such an environment, copy the entire
samples tree to another directory to which you have full read/write
access. While it is possible to copy projects individually from the sample
tree, there are several samples which require access to files in peer-level
directories. Such samples have been modified to automatically look for
such files relative to the default sample tree hierarchy, and to display a
message at run time indicating the path being used to locate such files.

An easy way to copy the entire samples tree is to use the cp -R command.
For example, to copy the tree to a ‘samples’ subdirectory of your home
directory, do the following:

% cd
% cp -R /usr/local/jbuilder/samples .

Alternatively, you could run the shell script in the main samples directory
named ‘chmod_samples’. Running this script enables the user who installs
JBuilder to control access to the samples.

Usage: chmod_samples full
 to allow all users to compile, run, and modify sample files
 or chmod_samples run
 to allow all users to compile, run, but not modify sample files
 or chmod_samples read
 to allow all users to read but not run or modify sample files

3-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S e t t i n g u p J D a t a S t o r e

Setting up JDataStore
DataStore Explorer is disabled on the Tools menu when you first install
JBuilder Foundation or Professional. To enable DataStore Explorer and
DataStore Server under the Tools menu, and to include the DataStore
components on the Data Express tab of the component palette, you need
to do one or more of the following:

• Install JDataStore on top of JBuilder Professional into the same location
as JBuilder. (JBuilder Enterprise installs JDataStore automatically,
making this step unnecessary.)

• Enter a valid JDataStore Developer license. Choose File | License
Manager within DataStore Explorer to enter the JDataStore license.

Installing JDataStore installs the JDataStore Server on your local machine.
No special configuration is necessary. The DataStore library will be added
to your project when you connect to a JDataStore database. The first time
you connect using JDataStore, you will be prompted for your serial
number and password.

To view and explore the contents of the DataStore, use the DataStore
Explorer. To start the DataStore Explorer, select Tools|DataStore
Explorer. To open the sample JDataStore, browse to
/jbuilder/samples/JDataStore/datastores/employee.jds.

For more information on the DataStore Explorer, see the JDataStore
Developer’s Guide.

Setting up InterBase and InterClient

About InterBase and InterClient

InterBase is a SQL-compliant, relational database management software
product that is easy to use. InterBase is client and tools independent,
supporting most of the popular desktop clients and application builder
frameworks.

InterClient is an all-Java JDBC driver for InterBase databases. InterClient
contains a library of Java classes which implement most of the JDBC API
and a set of extensions to the JDBC API. It interacts with the JDBC Driver
Manager to allow client-side Java applications and applets to interact with
InterBase databases.

InterClient includes a server-side driver, called InterServer. It can be
downloaded from www.interbase.com. This server-side middle ware
serves as a translator between the InterClient-based clients and the

S e t t i n g u p J B u i l d e r f o r d a t a b a s e a p p l i c a t i o n s 3-5

S e t t i n g u p I n t e r B a s e a n d I n t e r C l i e n t

InterBase database server. It includes the Java application development
classes, and a web server deployment kit.

Developers can deploy InterClient-based clients in two ways:

• Java applets are Java programs that can be included in an HTML page
with the <APPLET> tag, served by a web server, and viewed and used
on a client system using a Java-enabled web browser. This deployment
method doesn’t require manual installation of the InterClient package
on the client system. It does however require a Java-enabled browser
on the client system.

• Java applications are stand-alone Java programs for execution on a client
system. This deployment method requires the InterClient package, and
the Java Runtime Environment (JRE) installed on the client system. The
JRE includes the JDBC Driver Manager.

As an all-Java API to InterBase, InterClient enables platform-independent,
client-server development for the Internet and corporate Intranets. The
advantage of an all-Java driver versus a native-code driver is that you can
deploy InterClient-based applets without having to manually load
platform-specific JDBC drivers on each client system (the web servers
automatically download the InterClient classes along with the applets).
Therefore, there’s no need to manage local native database libraries, which
simplifies administration and maintenance of customer applications. As
part of a Java applet, InterClient can be dynamically updated, further
reducing the cost of application deployment and maintenance.

Using InterBase and InterClient with JBuilder

To use InterBase and InterClient with JBuilder, install InterBase and
InterClient following their instructions, then start the InterBase Server,
followed by InterClient’s InterServer.

If you have trouble connecting, be sure the InterBase database and
InterServer are both running. InterServer and the database can run on the
same machine as your application, or on a different machine. As a result,
there are many possible configurations. It is important that your
InterClient version be compatible with your database version and your
JDK. For more information on these topics, please refer to the InterBase
and InterClient documentation.

If InterBase Server and InterServer are on a different platform than
JBuilder, you need to:

• Make sure InterBase and InterServer are running on the server.

• Make sure InterClient is installed on the client.

• Make sure the URL of the Connection Descriptor on the client has the
correct IP address of the server running InterBase and InterServer.

3-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S e t t i n g u p I n t e r B a s e a n d I n t e r C l i e n t

After InterClient is installed, add it to JBuilder using Tools|Enterprise
Setup, then add it to your required list of libraries for your project in
Project|Properties. For more information, see “Adding a JDBC driver to
JBuilder” on page 3-7.

Tips on using sample InterBase tables

• Sample databases are installed by the setup program. You may wish to
make a copy of the employee.jds sample database so that you can easily
restore the file to its original condition after experimenting with
database programming.

• These sample databases enforce many constraints on data values, as is
normal in a realistic application.

• The EMPLOYEE table is used extensively in the examples in this
manual. Constraints on the employee table include:

• All fields are required (data must be entered) except for
PHONE_EXT.

• EMP_NO is generated, so no need to input for new records. It’s
also the primary key, so don’t change it.

• Referential integrity.

• DEPT_NO must exist in Department table.1

• JOB_CODE, JOB_GRADE, JOB_COUNTRY must exist in JOB
table.

• SALARY must be greater than or equal to min_salary field from
job table for the matching job_code, job_grade and job_country
fields in job.

• FULL_NAME is generated by the query so no need to enter
anything.

Basically, it’s safest to modify the LAST_NAME, FIRST_NAME,
PHONE_EXT fields in existing records.

• The CUSTOMER table is also used in the database tutorials. Its
constraints include:

• CUST_NO is generated, so no need to input for new records.

These constraints affect all examples where you add, insert, or update
data from the employee table and attempt to save the changes back to
the server table, for example, see Chapter 8, “Saving changes back to
your data source.”

To view the metadata for the sample tables,

• Run Tools|Database Pilot.

S e t t i n g u p J B u i l d e r f o r d a t a b a s e a p p l i c a t i o n s 3-7

A d d i n g a J D B C d r i v e r t o J B u i l d e r

Adding a JDBC driver to JBuilder
After installing your JDBC driver following the manufacturer’s
instructions, use the steps below to set it up for use with JBuilder.

Note Uninstalled drivers are red on the Drivers list in the Connection Property
dialog box and cannot be selected for use in JBuilder. You must install
them according to the manufacturer first before setting them up in
JBuilder.

Creating the .library and .config files

There are three steps to adding a database driver to JBuilder:

• Creating a library file which contains the driver’s classes, typically a
JAR file, and any other auxiliary files such as documentation and
source.

• Deriving a .config file from the library file which JBuilder adds to its
classpath at start-up.

• Adding the new library to your project, or to the Default project if you
want it available for all new projects.

The first two steps can be accomplished in one dialog box:

1 Open JBuilder and choose Tools|Enterprise Setup. Click the Database
Drivers tab which displays .config files for all the currently known
database drivers.

2 Click Add to add a new driver, then New to first create a new library
file for the driver. The library file is used to add the driver to the
required libraries list for projects.

Note You can also create a new library under Tools|Configure Libraries, but
since you would then have to use Enterprise Setup to derive the .config
file, it is simpler to do it all here.

3 Type a name and select a location for the new file in the Create New
Library dialog box.

4 Click Add, and browse to the location of the driver. You can select the
directory containing the driver and all it’s support files, or you can
select just the archive file for the driver. Either will work. JBuilder will
extract the information it needs.

5 Click OK to close the file browser. This displays the new library at the
bottom of the library list and selects it.

6 Click OK. JBuilder creates a new .library file in the JBuilder /lib
directory with the name you specified (for example,
InterClient.library). It also returns you to the Database Drivers page

3-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

which displays the name of the corresponding .config file in the list
which will be derived from the library file (for example,
InterClient.config).

7 Select the new .config file in the database driver list and click OK. This
places the .config file in the JBuilder /lib/ext directory.

8 Close and restart JBuilder so the changes to the database drivers will
take effect, and the new driver will be put on the JBuilder classpath.

Important If you make changes to the .library file after the .config file has been
derived, you must re-generate the .config file using Enterprise Setup, then
restart JBuilder.

Adding the JDBC driver to projects

Projects run from within JBuilder use only the classpath defined for that
project. Therefore, to make sure the JDBC driver is available for all new
projects that will need it, define the library and add it to your default list
of required libraries. This is done from within JBuilder using the following
steps:

1 Start JBuilder and close any open projects.

2 Choose Project|Default Project Properties.

3 Select the Required Libraries tab on the Paths page, then click the Add
button.

4 Select the new JDBC driver from the library list and click OK.

5 Click OK to close the Default Project Properties dialog box.

Note You can also add the JDBC driver to an existing project. Just open the
project, then choose Project|Properties and use the same process as above.

Now JBuilder and the new JDBC driver are set up to work together. The
next step is to create or open a project that uses this driver, add a Database
component to it, and set its connection property so it can use that driver to
access the data. For an example of how to do this, see “Tutorial:
Connecting to a database using InterClient JDBC drivers” on page 4-6.

Deploying database applications
How can I package my JDBC driver with my application or applet? See
the online help topic “Deploying programs and applets: Deploying JDBC
drivers” for the most up-to-date information on deploying database
applications.

S e t t i n g u p J B u i l d e r f o r d a t a b a s e a p p l i c a t i o n s 3-9

T r o u b l e s h o o t i n g d a t a b a s e c o n n e c t i o n s i n t h e t u t o r i a l s

Troubleshooting database connections in the tutorials
Connecting to a SQL server using JDBC can result in error messages
generated by JDBC. For help with troubleshooting JDataStore connections
in the tutorials,

• Read “Debugging DataStore applications” in the JDataStore Developer’s
Guide.

• Check the Borland JDataStore FAQ at
http://www.borland.com/jdatastore/productinfo/faq.html.

• Read “Common connection error messages” in Chapter 4, “Connecting
to a database” for problems connecting to InterBase via InterClient.

3-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o a d a t a b a s e 4-1

C h a p t e r

4
Chapter4Connecting to a database

Database application
development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

The Database component handles the JDBC connection to a SQL server and
is required for all database applications involving server data. JDBC is the
Sun Database Application Programmer Interface, a library of components
and classes developed by Sun to access remote data sources. The
components are collected in the java.sql package and represent a generic,
low-level SQL database access framework.

The JDBC API defines Java classes to represent database connections, SQL
statements, result sets, database metadata, etc. It allows a Java
programmer to issue SQL statements and process the results. JDBC is the
primary API for database access in Java. The JDBC API is implemented
via a driver manager that can support multiple drivers connecting to
different databases. For more information about JDBC, visit the Sun JDBC
Database Access API web site at http://java.sun.com/products/jdbc/.

JBuilder uses the JDBC API to access the information stored in databases.
Many of JBuilder’s data-access components and classes use the JDBC API.
Therefore, these classes must be properly installed in order to use the
JBuilder database connectivity components. In addition, you need an
appropriate JDBC driver to connect your database application to a remote
server. Drivers can be grouped into two main categories: drivers
implemented using native methods that bridge to existing database access
libraries, or all-Java based drivers. Drivers that are not all-Java must run
on the client (local) system. All-Java based drivers can be loaded from the
server or locally. The advantages to using a driver entirely written in Java
are that it can be downloaded as part of an applet and is cross-platform.

Some versions of JBuilder include JDBC drivers. Check the Borland web
site at (http://www.borland.com/jbuilder/) for availability of JDBC
drivers in the JBuilder versions, or contact the technical support

4-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g t h e J D a t a S t o r e J D B C d r i v e r

department of your server software company for availability of JDBC
drivers. Some of the driver options that may ship with JBuilder are:

• DataStoreDriver

DataStoreDriver is the JDBC driver for the JDataStore database. The
driver supports both local and remote access. Both types of access
require a user name (any string, with no setup required).

For information on connecting to a database using the DataStore driver,
see “Tutorial: Connecting to a database using the JDataStore
JDBC driver” on page 4-2.

• InterClient

InterClient is a JDBC driver that you can use to connect to InterBase.
InterClient can be installed by running the InterClient installation
program. Once installed, InterClient can access InterBase sample data
using the ConnectionDescriptor.

For information on connecting to a database using InterClient, see
“Tutorial: Connecting to a database using InterClient JDBC drivers” on
page 4-6.

You can connect JBuilder applications to remote or local SQL databases, or
to databases created with other Borland applications such as C++ Builder
or Delphi. To do so, look at the underlying database that your application
connects to and connect to that database using its connection URL.

Tutorial: Connecting to a database using the JDataStore
JDBC driver

This tutorial assumes you are familiar with the JBuilder design tools. If
not, see the online help topic “Designing a user interface.”

This tutorial outlines:

• “Adding a Database component to your application” on page 4-3

• “Setting Database connection properties” on page 4-4

• “Using the Database component in your application” on page 4-9

• “Prompting for user name and password” on page 4-9

• “Pooling JDBC connections” on page 4-10

C o n n e c t i n g t o a d a t a b a s e 4-3

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g t h e J D a t a S t o r e J D B C d r i v e r

Note When you no longer need a Database connection, you should explicitly call
the Database.closeConnection() method in your application. This ensures
that the JDBC connection is not held open when it is not needed and
allows the JDBC connection instance to be garbage collected.

Adding a Database component to your application

The Database component is a JDBC-specific component that manages a
JDBC connection. To access data using a QueryDataSet or a ProcedureDataSet
component, you must set the database property of the component to an
instantiated Database component. Multiple data sets can share the same
database, and often will.

In a real world database application, you would probably place the
Database component in a data module. Doing so allows all applications
that access the database to have a common connection. To learn more
about data modules, see Chapter 11, “Using data modules to simplify data
access.”

To add the Database component to your application,

1 Create a new project and application files using the Application wizard.
(You can optionally follow this tutorial to add data connectivity to an
existing project and application.) To create a new project and
application files:

1 Select File|Close from the JBuilder menu to close existing
applications. If you do not do this step before you do the next step,
the new application files will be added to the existing project.

2 Select File|New and double-click the Application icon. Accept (or
modify) all defaults.

2 Open the UI designer by selecting the file Frame1.java in the content
pane, then select the Design tab at the bottom of the AppBrowser.

3 Select the DataExpress tab from the component palette. Click the
Database component.

4 Click anywhere in the designer window to add the Database component
to your application. This adds the following line of code to the Frame
class:

Database database1 = new Database();

4-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g t h e J D a t a S t o r e J D B C d r i v e r

The Database component appears in the content pane, looking like this:

Setting Database connection properties

The Database connection property specifies the JDBC driver, connection
URL, user name, and password. The JDBC connection URL is the JDBC
method for specifying the location of a JDBC data provider (for example,
SQL server). It contains all the information necessary for making a
successful connection, including user name and password.

You can access the ConnectionDescriptor object programmatically, or you
can set connection properties through the Inspector. If you access the
ConnectionDescriptor programmatically, follow these guidelines:

• If you set promptPassword to true, you should also call openConnection() for
your database. openConnection() determines when the password dialog
is displayed and when the database connection is made.

• Get user name and password information as soon as the application
opens. To do this, call openConnection() at the end of the main frame’s
jbInit() method.

If you don’t explicitly open the connection, it will try to open when a
component or data set first needs data.

The following steps describe how to set connection properties through the
UI designer to the sample JDataStore database.

Note To use the sample database, you will need to make sure your system is set
up for JDataStore. If you have not already done so, see “Setting up
JDataStore” on page 3-4.

C o n n e c t i n g t o a d a t a b a s e 4-5

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g t h e J D a t a S t o r e J D B C d r i v e r

1 Select database1 in the component tree.

2 Select the connection property’s value in the Inspector, and click the
ellipsis button to open the Connection property editor.

3 Set the following properties:

The dialog looks like this:

Property Description

Driver The class name of the JDBC driver that corresponds to the
URL, for this example, select
com.borland.datastore.jdbc.DataStoreDriver from the list.

URL The Universal Resource Locator (URL) of the database, for this
example. The default value is
jdbc:borland:dslocal:directoryAndFile.jds. Click the Browse
button to select the Local DataStore Database, which is located
in /jbuilder/samples/JDataStore/datastores/employee.jds. Use
the Browse button to select this file to reduce the chance of
making a typing error. When selected, the URL will look
similar to this:
Unix:
jdbc:borland:dslocal:/usr/local/jbuilder/samples/JDataStore/
datastores/employee.jds

Windows:
jdbc:borland:dslocal:C:\jbuilder\samples\JDataStore\
datastores\employee.jds

Username The user name authorized to access the server database. For
the sample tutorials, any user name will work.

Password The password for the authorized user. For the tutorials, no
password is required.

Prompt user for
password

Whether to prompt the user for a password when opening
the database connection.

4-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g I n t e r C l i e n t J D B C d r i v e r s

4 Click the Test Connection button to check that the connection
properties have been correctly set. The connection attempt results are
displayed beside the Test Connection button.

If DataStore was installed with JBuilder, you will be prompted for your
serial number and password the first time you use it. If you don’t have
the DataStore information at this time, you can enter it later by selecting
Tools|DataStore Explorer, then selecting License Manager from its File
menu.

If you cannot successfully connect to the sample database, make sure to
set up your computer to use the JDataStore sample database. See
“Setting up JDataStore” on page 3-4 for more information.

5 Click OK to exit the dialog and write the connection properties to the
source code when the connection is successful.

The source code, if the example above is followed, looks similar to this:

database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor(
"jdbc:borland:dslocal:
/usr/local/jbuilder/samples/JDataStore/datastores/employee.jds",
, , false, "com.borland.datastore.jdbc.DataStoreDriver"));

6 Select a DBDisposeMonitor component from the More dbSwing tab.
Click in the content pane to add it to the application. The
DBDisposeMonitor will close the DataStore when the window is
closed.

7 Set the DBDisposeMonitor’s dataAwareComponentContainer property to
this.

Tip Once a database URL connection is successful, you can use the Database
Pilot to browse JDBC-based meta-database information and database
schema objects in the DataStore, and to execute SQL statements, and
browse and edit data in existing tables.

Tutorial: Connecting to a database using InterClient JDBC drivers
This section discusses adding a Database component, which is a
JDBC-specific component that manages a JDBC connection, and setting
the properties of this component that enable you to access sample
InterBase data.

In a real world database application, you would probably place the
Database component in a data module. Doing so allows all applications
that access the database to have a common connection. To learn more

C o n n e c t i n g t o a d a t a b a s e 4-7

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g I n t e r C l i e n t J D B C d r i v e r s

about data modules, see Chapter 11, “Using data modules to simplify data
access.”

To add the Database component to your application and connect to the
InterBase sample files,

1 Make sure to follow the steps in “Setting up InterBase and InterClient”
on page 3-4 and “Adding a JDBC driver to JBuilder” on page 3-7 to
make sure your system is correctly set up for accessing the sample
InterBase files.

2 Make sure InterServer is running (it should be).

3 Close all projects and create a new application, or add data connectivity
to an existing project and application. You can create a new project and
application files by selecting File|New, and double-clicking the
Application icon. Select all defaults.

JBuilder will create the necessary files and display them in the
AppBrowser project pane. The file Frame1.java will be open in the
content pane. Frame1.java will contain the user interface components for
this application.

4 Click the Design tab on Frame1.java at the bottom of content pane.

5 Select the Data Express tab on the component palette, and click the
Database component.

6 Click anywhere in the content pane or UI designer to add the Database
component to your application.

7 Set the Database connection property to specify the JDBC driver,
connection URL, user name, and password.

The JDBC connection URL is the JDBC method for specifying the
location of a JDBC data provider (i.e., SQL server). It can actually
contain all the information necessary for making a successful
connection, including user name and password.

To set the connection property,

1 Make sure the Database object is selected in the content pane.
Double-click the connection property in the Inspector to open the
connection property editor. In this example, the data resides on a
Local InterBase server. If your data resides on a remote server, you
would type the IP address of the server instead of “localhost”
entered here.

4-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : C o n n e c t i n g t o a d a t a b a s e u s i n g I n t e r C l i e n t J D B C d r i v e r s

2 Set the following properties:

The dialog looks like this:

3 Click the Test Connection button to check that the connection
properties have been correctly set. The connection attempt results
are displayed directly beneath the Test Connection button. See
“Common connection error messages” on page 4-9 for solutions to
some typical connection problems.

4 Click OK to exit the dialog and write the connection properties to the
source code when the connection is successful.

Tip Once a database URL connection is successful, you can use the Database
Pilot to browse JDBC-based meta-database information and database
schema objects, as well as execute SQL statements, and browse and edit
data in existing tables.

Property Value

Driver interbase.interclient.Driver

URL Browse to the sample InterBase file, employee.gdb, located in
your InterBase /examples directory. The entry in the URL
field will look similar to this:
Unix:
jdbc:interbase://localhost//usr/interbase/examples/employee.gdb

Windows:
jdbc:interbase://localhost/D:\InterBaseCorp\InterBase\examples\
database\employee.gdb

Username SYSDBA

Password masterkey

C o n n e c t i n g t o a d a t a b a s e 4-9

U s i n g t h e D a t a b a s e c o m p o n e n t i n y o u r a p p l i c a t i o n

Common connection error messages

Listed below are some common connection errors and solutions:

• Unable to locate the InterClient driver. InterClient has not been added
as a required library for the project. Select Project|Properties, and add
InterClient as a Required Library.

• Driver could not be loaded. InterClient has not been added to the
CLASSPATH. Add the interclient.jar file to the JBuilder startup script
CLASSPATH, or to your environment’s CLASSPATH before launching
JBuilder.

Using the Database component in your application
Now that your application includes the Database component, you’ll want
to add another DataExpress component that retrieves data from the data
source to which you are connected. JBuilder uses queries and stored
procedures to return a set of data. The components implemented for this
purpose are QueryDataSet and ProcedureDataSet. These components work
with the Database component to access the SQL server database. For
tutorials on how to use these components, see:

• “Querying a database” on page 5-14

• “Using parameterized queries to obtain data from your database” on
page 5-27

• Chapter 6, “Using stored procedures”

Most of the sample applications and tutorials use a Database connection to
the sample EMPLOYEE DataStore, as described here. A few of the sample
applications and tutorials, particularly those that use stored procedures to
retrieve or save data, use a connection to the InterBase employee database
through the InterClient JDBC driver.

For most database applications, you would probably encapsulate the
Database and other DataExpress components in a DataModule instead of
directly adding them to an application’s Frame. For more information on
using the DataExpress package’s DataModule, see Chapter 11, “Using data
modules to simplify data access.”

Prompting for user name and password
When developing a database application, it is convenient to include a user
name and password in the ConnectionDescriptor so that you do not have to
supply this information each time you use the designer or run your
application. If you set the ConnectionDescriptor through the designer, the

4-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P o o l i n g J D B C c o n n e c t i o n s

designer writes the code for you. Before you deploy your application, you
will probably want to remove the user name and password from the code,
prompting the user for the information at runtime instead, particularly if
you distribute the source code or if different users have different access
rights. You have several options for prompting a user for their user name
and password at runtime.

• Check the Prompt User For Password checkbox in the editor for the
Database connection property, or write code to set the
ConnectionDescriptor promptPassword parameter to true.

At runtime and when you show live data in the Designer, a user name
and password dialog will display. A valid user name and password
must be entered before data will display.

• Add an instance of dbSwing DBPasswordPrompter to your application.

This option gives you more control over user name/password
handling. You can specify what information is required (only user
name, only password, or both), how many times the user can attempt to
enter the information, and other properties. The OK button will be
disabled until the necessary information is supplied. The dialog is
displayed when you call its showDialog() method. This allows you to
control when it appears. Be sure to present it early in your application,
before any visual component tries to open your database and display
data. The designer doesn’t call showDialog(), so you need to specify user
name and password in the ConnectionDescriptor when you activate the
designer.

Pooling JDBC connections
For applications which require many database connections, you should
consider connection pooling. Connection pooling provides significant
performance gains, especially in cases where large numbers of database
connections are opened and closed.

JDataStore provides several components for dealing with JDBC 2.0
DataSources and connection pooling. Use of these components requires
J2EE or the javax.sql standard extensions package. If your version of
JBuilder does not include J2EE.jar or jdbc2_0stdext.jart, you will need to
download one of them from Sun, and add it to your project as a required
library. See “Adding a required library to a project” on page 11-5 for
instructions on adding a required library.

The basic idea behind connection pooling is simple. In an application that
opens and closes many database connections, it is efficient to keep unused
Connection objects in a pool for future re-use. This saves the overhead of
having to open a new physical connection each time a connection is
opened.

C o n n e c t i n g t o a d a t a b a s e 4-11

P o o l i n g J D B C c o n n e c t i o n s

Here are the main DataSource and connection pooling components
provided by JDataStore:

JDBCDataSource is an implementation of the javax.sql.DataSource interface.
JDBCDataSource can create a connection to a DataStore, or any other JDBC
driver, based on its JDBC connection properties, but it does no connection
pooling. Because it is an implementation of javax.sql.DataSource, it can be
registered with a JNDI naming service. For information on JNDI naming
services, consult the JDK documentation, or http://www.javasoft.com.

JDBCConnectionPool is also an implementation of javax.sql.DataSource, and
therefore can be registered with a JNDI naming service. JDBCConnectionPool
can be used to provide connection pooling with any JDBC driver. It
creates connections based on its JDBC connection properties.
JDBCConnectionPool has various properties for connection pool
management, for instance, properties specifying a minimum and
maximum number of connections.

When using JdbcConnectionPool, you are required to set the
connectionFactory property. This allows JdbcConnectionPool to create
javax.sql.PooledConnection objects. The connectionFactory property setting
must refer to an implementation of javax.sql.ConnectionPoolDataSource
(such as JdbcConnectionFactory). The connectionFactory property can also be
set by using the dataSourceName property. The dataSourceName property takes
a String, which it will look up in the JNDI naming service to acquire the
implementation of javax.sql.ConnectionPoolDataSource.

To get a connection from the pool, you will usually call
JdbcConnectionPool.getConnection(). The connection returned by this
method does not support distributed transactions, but it can work with
any JDBC driver.

JDBCConnectionPool also provides support for distributed transactions (XA),
but this feature is only available when JDBCConnectionPool is used in
conjunction with the JDataStore JDBC driver, and is only useful when
combined with a distributed transaction manager, such as the Inprise
Application Server. For more information on JDBCConnectionPool’s XA
support, see “Connection pooling and distributed transaction support” in
the JDataStore Developer’s Guide.

JdbcConnectionFactory is an implementation of
javax.sql.ConnectionPoolDataSource. It is used to create
javax.sql.PooledConnection objects for a connection pool implementation
like JDBCConnectionPool.

JDBCConnectionPool and JDBCConnectionFactory are easily used together, but
they can also each be used separately. The decoupling of these two
components provides more flexibility. For example, JDBCConnectionFactory
could be used with another connection pooling component which uses a
different strategy than JDBCConnectionPool. JDBCConnectionFactory can be
used with any JDBC 2.0 connection pool implementation that allows a

4-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P o o l i n g J D B C c o n n e c t i o n s

javax.sql.ConnectionPoolDataSource implementation (like
JDBCConnectionFactory) to provide its javax.sql.PooledConnections.

JDBCConnectionPool’s efficient pooling strategy, on the other hand, could be
used with another connection factory implementation. JDBCConnectionPool
can be used with any JDBC driver that provides a connection factory
component which implements javax.sql.ConnectionPoolDataSource.

Now that we’ve given you an overview of the classes involved in
connection pooling, it’s time to explain a bit more about how they work:

The JdbcConnectionPool.getConnection() method tries to save the overhead
of opening a new connection by using a connection that is already in the
pool. When a lookup is performed to find a connection in the pool, a
match is found if the user name equals the user name that was originally
used to create the pooled connection. Password is not considered when
trying to match a user. A new connection is requested from the factory
only if no match is found in the pool.

Connection pooling is a relatively simple, but very powerful API. Most of
the difficult work, like keeping track of pooled connections, and deciding
whether to use an existing pooled connection or open a new one, is done
completely internally.

When an application uses connection pooling, a connection should always
be explicitly closed when no longer in use. This allows the connection to
be returned to the pool for later use, which improves performance.

The factory which creates connections for the pool should use the same
property settings for all of them, except for the user name and password.
A connection pool, therefore, accesses one database, and all its
connections have the same JDBC connection property settings (but can
have different usernames/passwords).

Optimizing performance of JConnectionPool
The lookup mechanism for finding a pooled connection that shares the
same user name does a quick scan comparing user name string references.
If possible, pass in the same String instance for all connection requests.
One way to ensure this is to always use a constant name specified as
follows for connection pooling:

public static final String POOL_USER = "CUSTOMER_POOL_USER";

Logging output
Both JdbcConnectionPool and JdbcConnectionFactory have PrintWriter
properties. Most log output has the form of:

[<class instance hashcode>]:<class name>.<method name>(…)

Any hex values displayed in [] in the log files are hashCode() values for an
Object.

C o n n e c t i n g t o a d a t a b a s e 4-13

P o o l i n g J D B C c o n n e c t i o n s

Example

The following is a trivial example of using connection pooling. This data
module code fragment shows the most important and most basic lines of
code you will need in an application using connection pooling, without
making too many assumptions about what your specific application may
need to do with this technology. For a non-trivial example of connection
pooling, refer to the Web Bench sample in samples/JDataStore/WebBench. For
more information about data modules, see Chapter 11, “Using data
modules to simplify data access.”

import com.borland.dx.dataset.*;
import com.borland.dx.sql.dataset.*;
import com.borland.javax.sql.*;

public class DataModule1 implements DataModule {

 private static DataModule1 myDM;
 private static final String POOL_USER = "POOL_USER";
 private static JdbcConnectionFactory factory;
 private static JdbcConnectionPool pool;
 private static Database database1;

 public DataModule1() {
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 // Instantiate connection factory
 factory = new JdbcConnectionFactory();

 // The next line sets the URL to a
 // local DataStore file. The specific
 // URL will depend on the location
 // of your DataStore file.
 factory.setUrl("jdbc:borland:dslocal:<path><file name>");
 factory.setUser(POOL_USER);
 factory.setPassword("");

 // Instantiate the connection pool
 pool = new JdbcConnectionPool();
 // Assign the connection factory as
 // the factory for this pool
 pool.setConnectionFactory(factory);

4-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P o o l i n g J D B C c o n n e c t i o n s

 // Instantiate a Database object
 database1 = new Database();
 // Assign the pool as the data source
 // for the Database object
 database1.setDataSource(pool);
}

 public static DataModule1 getDataModule() {
 if (myDM == null) {
 myDM = new DataModule1();
 }
 return myDM;
 }

 public static JdbcConnectionPool getPool() {
 return pool;
 }

 public static Database getDatabase() {
 return database1;
 }

}

You will probably write the code for the application logic in a separate
source file. The next code fragment shows how to request connections
from the pool, and later, how to make sure the connections are returned to
the pool. It also shows how to make sure the pool is shut down when the
application ends.

public class doSomething {

static DataModule1 dm = null;

public doSomething() {
}

public static void main(String args[]){

// Several of the methods called here could
// throw exceptions, so exception handling
// is necessary.

try{

// Instantiate the data module
dm = new DataModule1();
java.sql.Connection con = null;

// This application gets 100 connections
// and returns them to the pool.
for (int i=0; i<100; i++){

C o n n e c t i n g t o a d a t a b a s e 4-15

P o o l i n g J D B C c o n n e c t i o n s

try{
// Get a connection

con = dm.getPool().getConnection();
}

catch(Exception e){
e.printStackTrace();

}

finally{
// Return the connection to the pool
con.close();

}
}

}
catch(Exception x){

x.printStackTrace();
}
finally{

try{
// Shut down the pool before the
// the application exits.
dm.getPool().shutdown();

}
catch(Exception ex){

ex.printStackTrace();
}

}

}
}

4-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-1

C h a p t e r

5
Chapter5Retrieving data from a

data source
Database application

development is a feature
of JBuilder Professional

and Enterprise.

Distributed application
development is a feature

of JBuilder Enterprise.

This chapter focuses on using JBuilder’s DataExpress architecture to
retrieve data from a data source, and provide data to an application. The
components in the DataExpress packages encapsulate both the connection
between the application and its source of the data, as well as the behavior
needed to manipulate the data.

To create a database application, you retrieve information stored in the
data source, and create a copy that your application can manipulate
locally. The data retrieved from the provider is cached inside a DataSet. All
changes to the cached DataSet are tracked so that resolver implementations
know what needs to be inserted, updated, or deleted back to the data
source. In JBuilder, a subset of data is extracted from the data source into a
JBuilder StorageDataSet subclass. The StorageDataSet subclass you use
depends on the way in which you obtain the information.

Using a provider/resolver approach, you only need two interactions
between the database application and the data source: the initial
connection to retrieve the data, and the final connection to resolve the
changes back to the data source. The connection between the DataSet
component client and the data source can be disconnected after data is
provided, and only needs to be re-established for the duration of the
resolving transaction.

DataExpress components also provide support for direct data binding to
dbSwing components. You simply set a property in the Inspector to bind
Data to visual components.

Some of the tutorials in this chapter use a JDataStore driver to access data
in a JDataStore. Others use a JDBC driver to access data in InterBase

5-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

W h e n t o u s e J D a t a S t o r e v s . J D B C d r i v e r s

tables. Both of these options have their advantages. Which you choose
depends on your application needs. With both options,

• You can directly wire visual components.

• You get full featured data access that includes master-detail, sorting,
filtering, and constraints.

• You can track edits to retrieved data so they can be correctly resolved to
the data source.

When to use JDataStore vs. JDBC drivers
You may wish to use a JDataStore to:

• Work off-line - you can save and edit data within the JDataStore file
system, resolve edits back when you are reconnected to the data source

• Store objects as well as data

• Work with larger sets of data

You may wish to use a JDBC driver to:

• Use a standards-based JDBC API

• Work with live SQL data - you can use a QueryProvider to query a SQL
database and work with live data, saving changes as necessary

• Take advantage of remote access using RemoteJDBC

Overview of the DataExpress components
This chapter discusses retrieving data using the DataExpress components
listed below. There are tutorials showing the steps necessary to use these
components to create database applications. The samples are located in
JBuilder/samples/DataExpress/. If you experience problems running the
sample applications, see “JBuilder sample files” on page 3-2 for
information critical to this process.

• TextDataFile

The TextDataFile component specifies the properties of a text file that
affect its import and export, such as delimiters, field separators, and so
on. This component is used when:

• importing data stored in a text format into a TableDataSet component
• exporting the data stored in any StorageDataSet to a text file

“Tutorial: An introduction to JBuilder database applications” on
page 5-4 steps you through creating a database application and user
interface, even if you are not connected to any SQL or desktop
databases. This tutorial uses data in a text file that ships with JBuilder.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-3

O v e r v i e w o f t h e D a t a E x p r e s s c o m p o n e n t s

For a tutorial that steps you through creating a database application
using your own text file, see Chapter 10, “Importing and exporting data
from a text file.”

• QueryDataSet

The QueryDataSet component provides functionality to run a query
statement (with or without parameters) against a table in a SQL
database.

“Querying a database” on page 5-14 steps through creating a local copy
of data by executing a query and storing its results in a QueryDataSet
component.

“Using parameterized queries to obtain data from your database” on
page 5-27 outlines the steps required when adding parameters to your
query statement.

• ProcedureDataSet

The ProcedureDataSet component provides functionality to run a stored
procedure against data stored in a SQL database, passing in parameters
if the procedure expects them. The procedure call is expected to return
a cursor or output that can be used to generate a DataSet.

Chapter 6, “Using stored procedures” steps through creating a local
copy of data by executing a stored procedure and storing its result set
in a ProcedureDataSet component.

• TableDataSet

The TableDataSet component may or may not have a formal provider or
resolver of its data. Its properties allow it to import file-based data. Use
this component to create a StorageDataSet from sources other than SQL
databases, for example, by importing data stored in a text file, from
data computations, or to simply work with database data off-line. You
can also use this component, or any other component that extends from
StorageDataSet, to directly access tables stored in a DataStore database
file.

Chapter 10, “Importing and exporting data from a text file” describes
how to import data from a text file into the TableDataSet component.
This topic discusses how to programmatically add Column components
and read in data such as date and timestamp data for which there are
no standards.

• Any DataSet

The DataSet class is an abstract class that provides basic editing,
viewing, and cursor functionality for access to two-dimensional data.

“Writing a custom data provider” on page 6-12 discusses custom data
providers, and how they can be used as providers for a TableDataSet and
any DataSet derived from TableDataSet.

5-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

• Column

The Column component stores important properties such as data type
and precision, as well as visual properties such as font and alignment.
For QueryDataSet and ProcedureDataSet components, Column components
are dynamically created each time the StorageDataSet is instantiated,
mirroring the actual columns in the data source at that time.

Chapter 7, “Working with columns” discusses column properties,
persistent columns, and metadata.

For QueryDataSet and ProcedureDataSet components, the data source is often
a SQL server database. In this case, you also need a Database component to
handle the connection to the server. See Chapter 4, “Connecting to a
database” for more information on connecting to a server. When using the
TableDataSet and TextDataFile components, you are usually reading data
from a text file. Because you are not accessing SQL server data, you do not
need a Database component.

See also
• “Understanding JBuilder’s DataExpress architecture” on page 2-4
• DataExpress Component Library Reference
• “Exploring database tables and metadata using the Database Pilot” on

page 18-1
• Chapter 11, “Using data modules to simplify data access”

Tutorial: An introduction to JBuilder database applications
This introductory tutorial steps you through creating a basic database
application and user interface (UI) using the JBuilder design tools to read
data from a text file. You can create a database application even if you are
not connected to a SQL or desktop database. You can create the database
application using data in a text file (in this case, a data file that ships with
JBuilder) and the DataExpress TextDataFile and TableDataSet components.

This tutorial then explores the JBuilder DataExpress architecture and
applies database concepts to the tutorial even though this application does
not connect to a SQL database. The UI for this application consists of three
components:

• A table component that displays the data from the text file.
• A toolbar to aid in browsing through the data.
• A status area that displays messages.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-5

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

When you have completed the tutorial, your application will look like
this:

The completed application can be viewed by opening the sample project
file, TextDataFile.jpr, in /jbuilder/samples/DataExpress/TextDataFile/.

Note If you downloaded JBuilder, you must also download the Samples Pack to
get the completed sample.

For a tutorial that steps you through creating a database application using
your own text file, see Chapter 10, “Importing and exporting data from a
text file.”

Creating the application structure

The first step when creating an application in JBuilder is to set up the
framework for the application. You can use JBuilder’s visual design tools
to quickly create the application structure and, in future steps of this
tutorial, to read data from the text file and to develop the user interface.

To create the application structure,

1 Choose File|Close All from the JBuilder menu to close any existing
projects.

2 Choose File|New Project to start the Project wizard.

3 Modify the project name to be TextDataFile.jpr.

5-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

4 Click Next and, optionally, enter information for a title (TextDataFile
tutorial), your name, your company, and a project description (This
tutorial...).

5 Click Finish.

Now that the basic project structure is created, open the Application
wizard to create a new Java application shell which contains a Frame that
will be the UI container.

1 Select File|New from the menu. Double-click the Application icon. The
first page of the Application wizard displays.

2 Accept the defaults.

3 Click Next.

4 Enter TextDataFile Tutorial in the Title field.

5 Click Finish.

6 Choose File|Save All.

The Application1.java and Frame1.java files are added to the project and are
displayed in the project pane (top left pane). Frame1.java is opened by
default in the content pane with its Source tab selected, and its structure
displayed in the structure pane (bottom left pane).

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-7

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

Adding DataExpress components to your application

You can use the JBuilder visual design tools to add DataExpress
components to your application. The visual design tools are available on
the Design tab in the content pane.

Figure 5.1 JBuilder visual design tools

You add DataExpress components by clicking them on the DataExpress tab
of the component palette, then dropping them into either the UI designer
or the component tree (lower left pane of the AppBrowser in design view).
JBuilder will automatically generate the corresponding source code for
you.

Even though the DataExpress components are not visual, JBuilder displays
them in the DataExpress folder in the component tree so you can select
them and set their properties using the Inspector.

For more information on the JBuilder visual design tools, see “Designing a
User Interface” in Building Applications with JBuilder.

You will need two DataExpress components to import data from a text
file:

• A TextDataFile to connect the TableDataSet to a text file.

• A TableDataSet to read a table (rows and columns) of data from a data
source (in this case, the text file) and to work with the data in the
JBuilder DataSet format.

5-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

Follow the steps below to add these components to your application:

1 Click the Design tab at the bottom of the content pane for Frame1.java.

2 Click the TextDataFile component on the DataExpress tab of the
component palette.

3 Click anywhere in the component tree to add it to your application.
textDataFile1 appears in the DataExpress folder of the component tree.

4 Click the TableDataSet component and add it to the application. It
appears as tableDataSet1.

5 Choose File|Save All to save your work.

Setting properties to connect the components

The next step is to connect the DataExpress components so that they can
“talk” to each other by setting the appropriate component properties. You
use the Properties tab of the Inspector to do this. The Inspector displays
the properties for the component that is selected in the UI designer or in
the component tree. For more information on using the Inspector, see the
online help topic “Setting component properties in the Inspector.”

The first property you need to set is the fileName property of the
TextDataFile component. This property tells JBuilder where to find the text
file containing the data for textDataFile1.

1 Select textDataFile1 in the component tree. The Inspector displays the
properties for this component on the Properties tab.

Note You can only select DataExpress components in the component tree
since they are non-visual components.

2 Click in the the edit area next to the fileName property in the Inspector
(the property value field). It changes color to show that it is active for
editing.

3 Click the ellipsis button to display the File Name dialog box.

4 Click the Browse button to display the Open dialog box, and browse to
/jbuilder/samples/DataExpress/TextDataFile/employee.txt. Click Open.

5 Click OK to close the File Name dialog box.

6 Click the Source tab to view the resulting source code, which should
look similar to:

textDataFile1.setFileName("/usr/local/jbuilder/samples/com/borland/
samples/DataExpress/TextDataFile/employee.txt");

Note This tutorial will not work if you use a different text file than employee.txt
at this time. This project also contains a SCHEMA file needed to import
this text file. Later examples show you how to work with your own data
files. See “Tutorial: Importing data from a text file” on page 10-2.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-9

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

Now you need to connect tableDataSet1 to the textDataFile1 component.

1 Click the Design tab and select tableDataSet1 in the component tree.

2 Click the dataFile property value, then click the down arrow and select
the entry for textDataFile1.

3 Click the Source tab to see the source code generated for this:

tableDataSet1.setDataFile(textDataFile1);

4 Choose File|Save All to save your work.

The employee.txt file is designed to work with the default settings stored in
the TextDataFile component for properties such as delimiter, separator, and
locale. If it was designed differently, the appropriate properties could be
set at this point.

Creating a user interface

Now you are ready to create a user interface for your database
application. The fastest way to do this is to use the UI designer.

Note Normally the first step in setting up a user interface is to determine the
appropriate layout for your application (how the components are
arranged visually, and which Java Layout Manager to use to control their
placement.) However, learning how to use Java layout managers is a big
task in itself. Therefore, to keep this tutorial focused on creating a
database application, you’ll use the default layout (BorderLayout), and
control the placement of the components by setting their constraints
property.

To learn about using layouts, see the online help topics “Laying out your
UI”, and “Using layout managers” in Building Applications with JBuilder.

The steps below add the following UI components to the application from
the dbSwing tab on the component palette:

• JdbTable (and container), used to display two-dimensional data, in a
format similar to a spreadsheet.

• JdbNavToolBar, a set of buttons that help you navigate through the data
displayed in a JdbTable. It enables you to move quickly through the data
set when the application is running.

• JdbStatusLabel, which displays information about the current record or
current operation, and any error messages.

You will add these components to contentPane (BorderLayout), which is a
JPanel, and the main UI container into which you are going to assemble
the visual components.

5-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

1 Click the Design tab on Frame1.java to open the UI designer, then click
on contentPane (BorderLayout) in the component tree to select it. The UI
designer displays black square sizing nibs around the selected
component’s outer edges in the UI designer.

2 Click the dbSwing tab on the component palette, then click the
JdbNavToolBar.

3 Click the area close to the center, top edge of the panel in the UI
designer. An instance of JdbNavToolBar, called jdbNavToolBar1, is added
to the panel and is displayed in the component tree. jdbNavToolBar1
automatically attaches itself to whichever StorageDataSet has focus.

jdbNavToolBar1 is now the currently selected component, and should
extend across the top edge of the panel. Don’t worry if it went
somewhere different than you expected. The layout manager controls
the placement, guessing the location by where you clicked. If you were
too close to the left or right or middle of the panel, it may have guessed
you wanted the component in a different place than you intended. You
can fix that in the next step.

4 Look at the constraints property for jdbNavToolBar1 in the Inspector. It
should have a value of NORTH. If it doesn’t, click once on the value to
display a drop-down list, and select North from the list.

5 Add a JdbStatusLabel component, using the same method. Drop it in the
area near the center, bottom edge of the panel. jdbStatusLabel1 should
have a constraints property value of SOUTH. If it doesn’t, change it in
the Inspector. jdbStatusLabel1 automatically attaches itself to whichever
DataSet has focus.

6 Add a TableScrollPane component to the center of the panel. Make sure
its constraints property is CENTER. A table should fill the rest of the
panel.

Scrolling behavior is not available by default in any Swing component
or dbSwing extension, so, to get scrolling behavior, you must add
scrollable Swing or dbSwing components to a JScrollPane or a
TableScrollPane. TableScrollPane provides special capabilities to JdbTable
over JScrollPane. See the dbSwing documentation for more information.

7 Finally, drop a JdbTable into the middle of the tableScrollPane1
component in the designer. This fills the tableScrollPane1 container with
jdbTable1.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-11

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

Your UI designer should look similar to this:

Note The scroll bars on a TableScrollPane are not visible in the designer because
the default property setting for vertical scroll bars and horizontal scroll bars is
AS_NEEDED. To display them all the time, change the settings for those
properties to ALWAYS.

JBuilder creates the corresponding source code immediately for the
elements you’ve added or modified in your application. To see this code,
click the Source tab.

5-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

Connecting the DataExpress component to a UI component
The next step is to connect the DataExpress components to the UI
components.

To connect the DataExpress components with the JdbTable, you must specify
a DataSet in the dataSet property of the component.

To set the dataSet property of the JdbTable component and connect the UI
component to live data,

1 Click the Design tab.

2 Select jdbTable1 in the content pane.

3 Click the edit area beside the dataSet property in the Inspector.

4 Click the down arrow that appears.

5 Select tableDataSet1 from the drop-down list. This list contains all
instantiated DataSet components (of which there is only one in this
example).

The column headers and live data appear in the table in the UI designer.

Compiling, running, and debugging your application

In the UI designer, data appears in the JdbTable and the application looks
complete. But users will not be running your application in the JBuilder UI
designer. So, the next step is to compile, run, test, and possibly debug the
application.

To compile and run the application, click the Run Project button. Clicking
the Run button compiles your source code (if it has not already been
compiled). If no errors are found, a message indicating that the source
code has successfully compiled displays in the message box at the bottom
of the AppBrowser. The application UI displays in a new, separate
window.

If there are syntax errors in the source code, the program is not
automatically run. If syntax errors are found, the error messages appear in
the message pane at the bottom of the AppBrowser. Double-click on the
error message to locate the source of the error in the code. Errors in
programming logic may not appear until run time when the application
performs in unexpected ways.

You will probably not encounter any syntax errors in this simple
application because all properties were selected from drop-down lists or
browsers. Syntax errors are most likely to occur when you modify the
generated code, or when you add in Java code manually.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-13

T u t o r i a l : A n i n t r o d u c t i o n t o J B u i l d e r d a t a b a s e a p p l i c a t i o n s

If you would like more information on compiling and debugging
applications in JBuilder, see the online help topics “Compiling Java
programs” and “Debugging Java programs” in Building Applications with
JBuilder.

You’ll notice the following behavior in the running application:

• The JdbTable displays the data from the text file.

• The JdbStatusLabel along the bottom of your application displays the
number of rows in the table, and your current row position. The
JdbStatusLabel displays messages generated by the TableDataSet. For
example, when you change data in the table, the status label displays
“Editing row”. As you move through the rows, you’ll notice the
JdbStatusLabel updates automatically.

• Scroll bars are visible because there is more data available than will fit
into the window.

• The JdbNavToolBar buttons at the top of your application enable you to
move through the data, edit the data, or insert or delete rows. This
occurs because the table and the toolbar are bound to the same
TableDataSet. When two or more components are both bound to the
same DataSet, they are said to “share” a cursor because they
automatically synchronize to point to the same row of data.

Although the JdbNavToolBar has a Save button, this button is dimmed,
and you cannot save changes to file-based data sources such as
employee.txt. If this application had connected to a true database, the
Save button provides a default mechanism for saving changes back to a
data source. For more information on saving changes to a database, see
“Saving changes back to your data source” on page 8-1. For more
information on saving changes when the data source is a text file, see
“Exporting data” on page 10-5.

Alternatively, the keyboard can be used to navigate the data in the
table.

Summary

The application created for this tutorial reads data from a text file,
displays the data in a JdbTable for viewing and editing, displays status
messages to a JdbStatusLabel, and includes a JdbNavToolBar component to
help browse though the data.

This tutorial was intended to familiarize you with the JBuilder
environment and the basic requirements for developing a database
application with JBuilder. Other topics in this chapter address retrieving
data from various data sources using SQL queries and stored procedures.
Chapter 10, “Importing and exporting data from a text file” provides more
information on retrieving data from text files. Chapter 13, “Filtering,

5-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Q u e r y i n g a d a t a b a s e

sorting, and locating data” shows how to include additional database
functions in your application.

See also
• “Retrieving data from a data source” on page 5-1
• “Querying a database” on page 5-14
• “Using parameterized queries to obtain data from your database” on

page 5-27
• Chapter 6, “Using stored procedures”
• Chapter 10, “Importing and exporting data from a text file”
• Chapter 13, “Filtering, sorting, and locating data”

Querying a database
A QueryDataSet component is a JDBC-specific DataSet that manages a JDBC
data provider, as defined in the query property. You can use a QueryDataSet
component in JBuilder to extract data from a data source into a
StorageDataSet component. This action is called “providing”. Once the data
is provided, you can view and work with the data locally in data-aware
components. When you want to save the changes back to your database,
you must resolve the data. The DataExpress architecture is discussed in
more detail in Chapter 2, “Understanding JBuilder database applications.”

QueryDataSet components enable you to use SQL statements to access, or
provide, data from your database. You can add a QueryDataSet component
directly to your application, or add it to a data module to centralize data
access and control business logic.

To query a SQL table, you need the following components, which can be
supplied programmatically or with JBuilder design tools:

• Database

The Database component encapsulates a database connection through
JDBC to the SQL server and also provides lightweight transaction
support.

• QueryDataSet

A QueryDataSet component provides the functionality to run a query
statement (with or without parameters) against tables in a SQL
database, and stores the result set from the execution of the query.

• QueryDescriptor

The QueryDescriptor object stores the query properties, including the
database to be queried, the query string to execute, and optional query
parameters.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-15

Q u e r y i n g a d a t a b a s e

The QueryDataSet has built-in functionality to fetch data from a JDBC data
source. However, the built-in functionality (in the form of the default
resolver) does much more than fetch data. It also generates the
appropriate SQL INSERT, UPDATE, and DELETE queries for saving
changes back to the data source after it has been fetched.

The following properties of the QueryDescriptor object affect query
execution. These properties can be set visually in the query property editor.
For a discussion of the query property editor and its tools and properties,
see “Setting properties in the query dialog” on page 5-19.

A QueryDataSet can be used in three different ways to fetch data.

• Unparameterized queries: The query is executed and rows are fetched
into the QueryDataSet.

• Parameterized queries: You use variables in the SQL statement and
then supply the actual parameters to fill in those values. For more
information on parameterized queries, see “Using parameterized
queries to obtain data from your database” on page 5-27.

• Dynamic fetching of detail groups: Records from a detail data set are
fetched on demand and stored in the detail data set. For more
information, see “Fetching details” on page 9-3.

Property Effect

database Specifies what Database connection object to run the query against.
query A SQL statement (typically a SELECT statement).
parameters An optional ReadWriteRow from which to fill in parameters, used for

parameterized queries.
executeOnOpen Causes the QueryDataSet to execute the query when it is first opened.

This is useful for presenting live data at design time. You may also
want this enabled at run time.

loadOption An optional integer value that defines the method of loading data
into the data set. Options are:
• Load All Rows: load all data up front.
• Load Rows Asynchronously: causes the fetching of DataSet rows

to be performed on a separate thread. This allows the DataSet
data to be accessed and displayed as the QueryDataSet is fetching
rows from the database connection.

• Load As Needed: load the rows as they are needed.
• Load One Row At A Time: load as needed and replace the

previous row with the current. Useful for high-volume
batch-processing applications.

5-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

Tutorial: Querying a database using the JBuilder UI
The following tutorial shows how to retrieve data using a QueryDataSet
component. This example also demonstrates how to attach the resulting
data set to a JdbTable for data viewing and editing.

Note We strongly recommended that before starting this tutorial you take the
beginning database tutorial, “Tutorial: An introduction to JBuilder
database applications” on page 5-4, to become familiar with using the
visual design tools.

The finished example for this tutorial is available as a completed project in
the /samples/DataExpress/QueryProvider directory of your JBuilder
installation.

Retrieving data by querying a database

To create the application and retrieve data from a table,

1 Select File|Close All, then File|New.

2 Double-click the Application icon and accept all defaults to create a
new application. Frame1.java will be opened by default in the content
pane.

3 Select the Design tab to activate the UI designer.

4 Click the Database component on the Data Express tab of the component
palette, then click anywhere in the UI designer or the component tree to
add the component to the application. database1 is added to the
DataExpress folder in the component tree, and selected by default.

5 Click in the connection property value field in the Inspector, then click
the ellipsis button to open the Connection property editor for database1.

6 Set the connection properties to the JDataStore sample EMPLOYEE
table, as follows:

The connection dialog includes a Test Connection button. Click this
button to check that the connection properties have been correctly set.
Results of the connection attempt are displayed beside the button.
When the connection is successful, click OK.

Property Name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Use the Browse button to browse to
/jbuilder/samples/JDataStore/datastores/employee.jds on your
system, then click Open.

Username Enter your name

Password not required

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-17

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

You can view the code generated by the designer for this step by
selecting the Source tab and looking for the ConnectionDescriptor code.
Click the Design tab to continue.

For more information on connecting to databases, see Chapter 4,
“Connecting to a database.”

7 Now add a QueryDataSet component to your application from the Data
Express tab of the component palette.

8 Click in the query property value field in the Inspector for queryDataSet1,
then click the ellipsis button to open the Query property editor.

9 Set the following properties:

Click Test Query to ensure that the query is runnable. When the area
beneath the button indicates Success, as shown below, click OK to close
the dialog.

10 Switch to the More dbSwing tab on the component palette and add a
DBDisposeMonitor to the application. This component will close the
DataStore when the window is closed.

11 Set the dataAwareComponentContainer property for dBDisposeMonitor1 to
‘this’.

12 Choose File|Save All.

Property name Value

Database database1

SQL Statement select * from employee

5-18 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

Creating the UI

Now create the UI for viewing and navigating the data in your
application. Select the dbSwing tab on the component palette, and do the
following:

1 Select contentPane (BorderLayout) in the component tree. (Black sizing
nibs around the edges of the panel in the designer show it is selected.)

2 Drop a JdbNavToolBar component into the designer at the top, center of
the panel and set its constraints property to NORTH.

3 Drop a JdbStatusLabel component into the designer at the bottom, center
of the panel and set its constraints property to SOUTH.

4 Drop a TableScrollPane component into the designer into the center of
the panel, and set its constraints property to CENTER.

5 Drop a JdbTable component into the center of tableScrollPane1 and set its
dataSet property to queryDataSet1.

You’ll notice that the designer displays a table with live data.

The application looks like this in the designer:

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-19

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

6 Select Run|Run Project to run the application and browse the data set.

The application looks like this when it is running:

To save the changes back to the data source, you can use the Save
Changes button on the toolbar component or, for more control on how
changes will be saved, create a custom data resolver, as described in the
topic Chapter 8, “Saving changes back to your data source.”

Setting properties in the query dialog
The Query property editor displays when you click the ellipsis button in
the value field for the query property of a QueryDataSet. You can use the
Query property editor to set the properties of the QueryDescriptor visually,
but it also has several other uses. The Query property editor is shown
below. Each of its options is explained in further detail as well.

For more information, see the
com.borland.dx.sql.dataset.QueryDescriptor topic in the DataExpress
Component Library Reference.

5-20 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

The Query page
On the Query tab, the following options are available:

• The Database drop-down list displays the names of all instantiated
Database objects to which this QueryDataSet can be bound. This property
must be set for the query to run successfully. To instantiate a Database,
see Chapter 4, “Connecting to a database.”

Selecting a Database object enables the SQL Builder and Browse Tables
button.

• Click the SQL Builder button to display the SQL Builder. The SQL
Builder provides a visual representation of the database, and allows
you to create a SQL Statement by selecting Columns, adding a Where
clause, an Order By clause, a Group By clause, and viewing and testing
the generated SQL Statement. When you click OK, the SQL Statement
you created with the SQL Builder will be placed in the SQL Statement
field of the Query dialog.

• Click the Browse Tables button to display the Available Tables and
Columns dialog. The Available Tables and Columns dialog displays a list
of tables in the specified Database, and the columns in the selected table.
The Paste Table and Paste Column buttons allow you to quickly create
your query statement by pasting the name of the selected table (by clicking
the Paste Table button) or selected column (by clicking the Paste Column
button) into your query statement at the cursor’s current (insertion) point.

This button is dimmed and unavailable while the Database field
displays the value “<none>”. Select a Database object in the Database
field to enable this button.

• SQL Statement is a Java String representation of a SQL statement
(typically a SELECT statement). Enter the query statement to run
against the Database specified in the Database drop-down list. Use the
Browse Tables button to quickly paste the selected table and column
names into the query statement. This is a required property; you must
specify a valid SQL statement. If the SQL statement does not return a
result set, an exception is generated.

An example of a simple SQL statement that is used throughout this text
selects three fields from the EMPLOYEE table:

SELECT emp_no, last_name, salary FROM employee

This following SQL statement selects all fields from the same table.

SELECT * FROM employee

• The Execute Query Immediately When Opened option determines
whether the query executes automatically when the QueryDataSet is
opened. This option defaults to checked, which allows live data to
display in the UI designer when the QueryDataSet is bound to a
data-aware component.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-21

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

• Load Options are optional integer values that define the method of
loading data into the data set. Options are:

1 Load All Rows: load all data up front.

2 Load Rows Asynchronously: causes the fetching of DataSet rows to
be performed on a separate thread. This allows the DataSet data to be
accessed and displayed as the QueryDataSet is fetching rows from the
database connection.

3 Load As Needed: load the rows as they are needed.

4 Load One Row At A Time: load as needed and replace the previous
row with the current. Useful for high-volume batch-processing
applications.

• When Place SQL Text In Resource Bundle is checked, upon exiting the
query property editor, the Create ResourceBundle dialog displays.
Select a resource bundle type. When the OK button is clicked, the SQL
text is written to a resource file so that you can continue to use source
code to persist SQL for some applications. See “Place SQL text in
resource bundle” on page 5-22 for more description of this feature.

If unchecked, the SQL string is written to the QueryDescriptor as a String
embedded in the source code.

• Click Test Query to test the SQL statement and other properties on this
dialog against the specified Database. The result (“Success” or “Fail”) is
displayed in the gray area directly beneath the Test Query button. If the
area below the button indicates success, the query will run. If it
indicates Fail, review the information you have entered in the query for
spelling and omission errors.

The Parameters page
On the Parameters tab, you can select an optional ReadWriteRow or DataSet
from which to fill in parameters, used for parameterized queries.
Parameter values are specified through an instantiated ReadWriteRow. Select
the ReadWriteRow object (or the ReadWriteRow subclass) that contains the
values for your query parameters from the drop-down list.

5-22 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

Any ReadWriteRow, such as ParameterRow, DataSet, and DataRow may be used as
query or procedure parameters. In a ParameterRow, columns can simply be
set up with the addColumns and setColumns methods. DataSet and DataRow
should only be used if they already contain the columns with the wanted
data. See “Using parameterized queries to obtain data from your
database” on page 5-27 for an example of this.

Place SQL text in resource bundle
A java.util.ResourceBundle contains locale-specific objects. When your
program needs a locale-specific resource, your program can load it from
the resource bundle that is appropriate for the current user’s locale. In this
way, you can write program code that is largely independent of the user’s
locale isolating most, if not all, of the locale-specific information in
resource bundles.

The Create ResourceBundle dialog appears when the query editor is
closing, if a SQL statement has been defined in the query editor and the
“Place SQL Text In Resource Bundle” option has been checked. The
resource bundle dialog looks like this:

To use a resource bundle in your application,

1 Select a type of ResourceBundle. To simplify things, the JDK provides two
useful subclasses of ResourceBundle: ListResourceBundle and
PropertyResourceBundle. The ResourceBundle class is itself an abstract class.
In order to create a concrete bundle, you need to derive from
ResourceBundle and provide concrete implementations of some functions
which retrieve from whatever storage you put your resources in, such
as string. You can store resources into this bundle by right-clicking a
property and specifying the key. JBuilder will write the strings into the
resource file in the right format depending on the type.

• If you select ListResourceBundle, a .java file will be generated and
added to the project. With ListResourceBundle, the messages (or other
resources) are stored in a 2-D array in a java source file.
ListResourceBundle is again an abstract class. To create an actual
bundle that can be loaded, you derive from ListResourceBundle and
implement getContents(), which most likely will just point to a 2D

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-23

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

array of key-object pairs. For the above example you would create a
class:

package myPackage;
public class myResource extends ListResourceBundle {
Object[][] contents = {
{"Hello_Message", "Howdy mate"}
}
public Object[][] getContents() {
return contents;
}
}

• If you select PropertyResourceBundle, a properties file will be created.
The PropertyResourceBundle is a concrete class, which means you don’t
need to create another class in order to use it. For property resource
bundles, the storage for the resources is in files with a .properties
extension. When implementing a resource bundle of this form, you
simply provide a properties file with the right name and store it in
the same location as the class files for that package. For the above
example, you would create a file myResource.properties and put it
either in the CLASSPATH or in the zip/jar file, along with other
classes of the myPackage package. This form of resource bundle can
only store strings, and loads a lot slower than class-based
implementations like ListResourceBundle. However, they are very
popular because they don’t involve working with source code, and
don’t require a recompile. The contents of the properties file will be
like this:

comments
Hello_message=Howdy mate

2 Click Cancel or OK:

Clicking the Cancel button (or deselecting the “Place SQL text in
resource bundle” option in the query dialog), writes a QueryDescriptor
like the following to the Frame file. The SQL text is written as a string
embedded in the source code.

queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
 "select * from employee", null, true, LOAD.ALL));

Clicking the OK button creates a queryDescriptor like the following:
queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,

 sqlRes.getString("employee"), null, true, LOAD.ALL));

Whenever you save the SQL text in the QueryDescriptor dialog, JBuilder
automatically creates a new file called “SqlRes.java”. It places the text
for the SQL string inside SqlRes.java and creates a unique string “tag”
which it inserts into the text. For example, for the select statement
"SELECT * FROM employee", as entered above, the moment the OK is

5-24 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

pressed, the file SqlRes.java would be created, looking something like
this:

public class SqlRes extends java.util.ListResourceBundle {
static final Object[][] contents = {

{ "employee", "select * from employee" }};
static final java.util.ResourceBundle res = getBundle("untitled3.SqlRes");
public static final String getStringResource(String key) {

return res.getString(key);
}
public Object[][] getContents() {

return contents;
}

}

If the SQL statement is changed, the changes are saved into SqlRes.java.
No changes will be necessary to the code inside jbInit(), because the
“tag” string is invariant.

For more information on resource bundles, see the JavaDoc for
java.util.ResourceBundle, found from JBuilder help by selecting Help|Java
Reference. Then select the java.util package, and the ResourceBundle class.

Querying a database: Hints & tips

This set of topics includes tips to help you

• Enhance data set performance
• Open and close data sets most efficiently
• Ensure that a query is updateable

Enhancing data set performance
This section provides some tips for fine-tuning the performance of a
QueryDataSet and a QueryProvider. For enhancing performance during data
retrieval, eliminate the query analysis that the QueryProvider performs by
default when a query is executed for the first time. See “Persisting query
metadata” on page 5-25 for information on doing this.

• Set the loadOption property on the Query/ProcedureDataSets to
Load.ASYNCHRONOUS or Load.AS_NEEDED. You can also set this property to
Load.UNCACHED if you will be reading the data one time, and in sequential
order.

• For large result sets, use a DataStore to improve performance. With this
option, the data is saved to disk rather than to memory.

• Cache SQL statements. By default, DataExpress will cache prepared
statements for both queries and stored procedures if
java.sql.Connection.getMetaData().getMaxStatements() returns a value
greater than 10. You can force statement caching in JBuilder by calling
Database.setUseStatementCaching(true).

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-25

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

The prepared statements that are cached are not closed until one of the
following happens:

• Some provider related property, like the query property, is changed.

• A DataSet component is garbage collected (statement closed in a
finalize() method).

• QueryDataSet.closeStatement(), ProcedureDataSet.closeStatement(),
QueryProvider.closeStatement(), or ProcedureProvider.closeStatement()
is called.

To enhance performance during data inserts/deletes/updates:

• For updates and deletes,

1 Set the Resolver property to a QueryResolver.

2 Set the UpdateMode property of this QueryResolver to
UpdateMode.KEY_COLUMNS.

These actions weaken the optimistic concurrency used, but reduce the
number of parameters set for an update/delete operation.

• Set your Database’s useTransactions property to false. This property is
true by default if the database supports transactions. When it is true,
each insert, delete, or update statement is treated as a separate,
automatically-committed transaction. When you set useTransactions to
false, the statements are all processed in a single transaction.

Note In this case, you must call the Database or Connection’s commit() method
to complete the transaction (or call rollback() to discard all the
changes).

• Disable the resetPendingStatus flag in the Database.saveChanges() method
to achieve further performance benefits. With this disabled,
DataExpress will not clear the RowStatus state for all
inserted/deleted/updated rows. This is only desirable if you will not
be calling saveChanges() with new edits on the DataSet without calling
refresh first.

Persisting query metadata
By default, a query is analyzed for updatability the first time it is executed.
This analysis involves parsing the query string and calling several
methods of the JDBC driver. This analysis is potentially very expensive.
You can remove the time overhead from run time, however, and perform
the analysis during design of a form or data model.

To do this,

1 Highlight the QueryDataSet in the designer, right-click it, and select
Activate Designer.

2 Press the “Persist All Metadata” button in the Column designer.

5-26 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : Q u e r y i n g a d a t a b a s e u s i n g t h e J B u i l d e r U I

The query is now analyzed, and a set of property settings will be added to
the code. For more discussion of the Persist All Metadata button, see
“Using the Column designer to persist metadata” on page 7-4. To set the
properties without using the designer,

1 Set the StorageDataSet’s metaUpdate property to NONE.

2 Set the StorageDataSet’s tableName property to the table name for single
table queries.

3 Set the Column’s rowID property for the columns so that they uniquely
and efficiently identify a row.

4 Change the query string to include columns that are suitable for
identifying a row (see previous bullet), if not already included. Such
columns should be marked invisible with the Column’s visible or hidden
property.

5 Set the column properties precision, scale, and searchable to appropriate
values. These properties are not needed if the metaDataUpdate property is
in something other than NONE.

6 Set the Column’s tableName property set for multi-table queries.

7 Set the Column’s serverColumnName property set to the name of the column
in the corresponding physical table if an alias is used for a column in
the query.

Opening and closing data sets
Database and DataSet are implicitly opened when components bound to
them open. When you are not using a visual component, you must
explicitly open a DataSet. “Open” propagates up and “close” propagates
down, so opening a DataSet implicitly opens a Database. A Database is never
implicitly closed.

Ensuring that a query is updateable
When JBuilder executes a query, it attempts to make sure that the query is
updateable and that it can be resolved back to the database. If JBuilder
determines that the query is not updateable, it will try to modify the query
to make it updateable, typically by adding columns to the SELECT clause.

If a query is found to not be updateable and JBuilder cannot make it
updateable by changing the query, the resulting data set will be read-only.

To make any data set updateable, set the updateMetaData property to NONE
and specify the data set’s table name and unique row identifier columns
(some set of columns that can uniquely identify a row, such as columns of
a primary or unique index). See “Persisting query metadata” on page 5-25
for information on how to do this.

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-27

U s i n g p a r a m e t e r i z e d q u e r i e s t o o b t a i n d a t a f r o m y o u r d a t a b a s e

You can query a SQL view, but JBuilder will not indicate that the data was
received from a SQL view as opposed to a SQL table, so there is a risk the
data set will not be updateable. You can solve this problem by writing a
custom resolver.

Using parameterized queries to obtain data from your database
A parameterized SQL statement contains variables, also known as
parameters, the values of which can vary at run time. A parameterized
query uses these variables to replace literal data values, such as those used
in a WHERE clause for comparisons that appear in a SQL statement. These
variables are called parameters. Ordinarily, parameters stand in for data
values passed to the statement. You provide the values for the parameters
before running the query. By providing different sets of values and
running the query for each set, you cause one query to return different
data sets.

An understanding of how data is provided to a DataSet is essential to
further understanding of parameterized queries, so read the topics
Chapter 2, “Understanding JBuilder database applications” and
“Querying a database” on page 5-14 if you have not already done so. This
topic is specific to parameterized queries.

In addition to the “Tutorial: Parameterizing a query” on page 5-27, the
following parameterized query topics are discussed:

• “Using parameters” on page 5-33
• “Re-executing the parameterized query with new parameters” on

page 5-35
• “Parameterized queries in master-detail relationships” on page 5-35

Tutorial: Parameterizing a query

The following tutorial shows how to provide data to an application using
a QueryDataSet component. This example adds a ParameterRow with low and
high values that can be changed at run time. When the values in the
ParameterRow are changed, the table will automatically refresh its display to
reflect only the records that meet the criteria specified with the
parameters.

Note We strongly recommended that before starting this tutorial you take the
beginning database tutorial, called “Tutorial: An introduction to JBuilder
database applications” on page 5-4, to become familiar with using the
visual design tools.

5-28 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g p a r a m e t e r i z e d q u e r i e s t o o b t a i n d a t a f r o m y o u r d a t a b a s e

A completed version of this tutorial is available in the sample project
ParameterizedQuery.jpr, located in the
/samples/DataExpress/ParameterizedQuery directory of your JBuilder
installation.

Creating the application
To create the application,

1 Select File|Close All.

2 Select File|New and double-click the Application icon

3 Accept all defaults to create a new application.

4 Select the Design tab to activate the UI designer.

5 Click the Database component on the Data Express tab of the component
palette, then click anywhere in the UI designer to add the component to
the application.

Open the Connection property editor for the Database component by
clicking the ellipsis in the connection property value in the Inspector.

6 Set the connection properties to the JDataStore sample EMPLOYEE
table, as follows:

The connection dialog includes a Test Connection button. Click this
button to check that the connection properties have been correctly set.
Results of the connection attempt are displayed beside the button.
When the connection is successful, click OK.

If you want to see the code that was generated, click on the Source tab
and look for the ConnectionDescriptor code. Click the Design tab to
continue.

For more information on connecting to databases, see Chapter 4,
“Connecting to a database.”

Adding a Parameter Row
Next, you will add a ParameterRow with two columns: low_no and high_no.
After you bind the ParameterRow to a QueryDataSet, you can use JdbTextField

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to
/jbuilder/samples/JDataStore/datastores/employee.jds in the
local URL field.

Username Enter your name

Password not required

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-29

U s i n g p a r a m e t e r i z e d q u e r i e s t o o b t a i n d a t a f r o m y o u r d a t a b a s e

components to change the value in the ParameterRow so that the query can
be refreshed using these new values.

1 Add a ParameterRow component to the application from the Data Express
tab.

2 Click the expand icon to the left of parameterRow1 in the component tree
to display the columns contained in the ParameterRow.

3 Select <new column>, and set the following properties for the new
column in the Inspector:

To see the code generated by the designer for this step, click the Source
tab and look at the jbInit() method. Click the Design tab to continue.

4 Select <new column> again to add the second column to the
ParameterRow, and set the following properties for it:

Adding a QueryDataSet
1 Add a QueryDataSet component from the Data Express tab to the

application.

2 Click the ellipsis button for the query property to open the Query
property editor.

3 Set the query property for queryDataSet1 as follows:

4 Click the Parameters tab in the Query property editor.

5 Select parameterRow1 in the drop-down list box to bind the data set to the
ParameterRow.

Property name Value

columnName low_no

dataType INT

default 15

Property name Value

columnName low_no

dataType INT

default 50

Property name Value

Database database1

SQL Statement select emp_no, first_name, last_name from employee where
emp_no >= :low_no and emp_no <= :high_no

5-30 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g p a r a m e t e r i z e d q u e r i e s t o o b t a i n d a t a f r o m y o u r d a t a b a s e

6 Click the Query tab. Click the Test Query button to ensure that the
query is runnable. When the area beneath the button indicates Success,
click OK to close the dialog.

The following code for the queryDescriptor is added to the jbInit()
method:

queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"select emp_no, first_name, last_name from employee where emp_no <= :low_no and
emp_no >= :high_no", parameterRow1, true, Load.ALL));

7 Add a DBDisposeMonitor component from the More dbSwing tab. The
DBDisposeMonitor will close the DataStore when the window is closed.

8 Set the dataAwareComponentContainer property for the DBDisposeMonitor to
‘this’.

Add the UI components
The instructions below assume you have taken the beginning database
tutorial and are already familiar with adding UI components to the
designer.

To add the components for viewing and manipulating the data in your
application,

1 Click the TableScrollPane component on the dbSwing tab of the
component palette. Drop it into the center of the panel in the UI
designer.

Make sure its constraints property is set to CENTER.

2 Drop a JdbTable component from the dbSwing tab into the center of
tableScrollPane1 component. Set its dataSet property to queryDataSet1.

You’ll notice that the table in the designer displays live data.

3 Select Run|Run Project to run the application and browse the data set.

4 Close the running application.

To add the components that make the parameterized query variable at run
time,

1 Select the JPanel component on the Swing Containers tab.

2 Drop it into the component tree, directly on the icon to the left of
contentPane(BorderLayout). This ensures that the JPanel (jPanel1) will be
added to the main UI, rather than to tableScrollPane1 which is currently
occupying the entire UI panel.

3 Make sure its constraints property is set to NORTH. (If tableScrollPane1
suddenly shrinks, check that its constraints property is still set to
CENTER.)

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-31

U s i n g p a r a m e t e r i z e d q u e r i e s t o o b t a i n d a t a f r o m y o u r d a t a b a s e

4 Select jPanel1 and set its preferredSize property to 200,100. This will
make it big enough to contain the rest of the components for the UI.

5 Drop a JdbTextField component from the dbSwing tab into jPanel1. This
component holds the minimum value.

6 Notice that jdbTextField1 is placed in the center of the panel at the top.
This is because the default layout for a JPanel component is FlowLayout.
If you try to drag the component to a different location, it won’t stay
there, but will return to it’s initial location.

To take control of the placement of the UI components in this panel,
change the layout property for jPanel1 to ‘null’. Then, drag jdbTextField1
to the left side of the panel.

7 Set the columns property for jdbTextField1 to 10 to give it a fixed width.
Set its text property to 10 to match the default minimum parameter
value you entered earlier.

8 Add a JLabel from the Swing tab to jPanel1. This label will identify
jdbTextField1 as the minimum field.

9 Click on jLabel1 in the UI designer and drag it to just above jdbTextField1.

10 Set the text property for jLabel1 to Minimum value. Grab the middle black
sizing nib on the right edge and expand the width of the label until all
of the text is visible.

11 Add another JdbTextField and JLabel to jPanel1 for the maximum value.
Drag this pair of components to the right side of the panel.

12 Set the columns property for jdbTextField2 to 10, and its text property
to 50.

13 Set the text property for jLabel2 to Maximum value, and expand its width
to show all the text.

14 Align all four components as follows:

Hold the control key down and click on both jLabel1 and jdbTextField1.
Right-click and choose Align Left so their left edges will be aligned.
(When you are using null layout for prototyping a UI, you have
alignment options available from the context menu.)

Left align jLabel2 and jdbTextField2. Top align the two text fields, and
top align the two labels.

15 Add a JButton from the Swing tab to jPanel1. Put this button in the
middle, midway between the two text fields. Set its text property to
Update.

Clicking this button will update the results of the parameterized query
with the values entered into the minimum and maximum value entry
fields.

5-32 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g p a r a m e t e r i z e d q u e r i e s t o o b t a i n d a t a f r o m y o u r d a t a b a s e

16 Select the Events tab of the Inspector, select the actionPerformed field,
and double-click the value field to create an actionPerformed() event in
the source code. The Source pane will display and the cursor will be
located between the opening and closing braces for the new
actionPerformed() event.

Add the following code so the event looks like this:

void jButton1_actionPerformed(ActionEvent e) {
try {

// change the values in the parameter row
// and refresh the display
parameterRow1.setInt("low_no",

Integer.parseInt(jdbTextField1.getText()));
parameterRow1.setInt("high_no",

Integer.parseInt(jdbTextField2.getText()));
queryDataSet1.refresh();
}

catch (Exception ex) {
ex.printStackTrace();
}

}

17 Save your work, and run the application. It should look like similar to
this:

To test the example, enter a new value in the minimum value entry
field, then press the Update button. The table displays only those
values above the new minimum value. Enter a new value in the
maximum value entry field, then press the Update button. The table
displays only those values below the new maximum value.

To save changes back to the data source, you will need to add a
QueryResolver. See “Saving changes from a QueryDataSet” on page 8-2
to learn how to add a button with resolving code, or add a JdbNavToolbar

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-33

P a r a m e t e r i z e d q u e r i e s : H i n t s & t i p s

component to the content pane and use its Save Changes button as a
default query resolver.

Parameterized queries: Hints & tips
This set of topics includes tips to help you

• Determine how to use named parameters and parameter markers
• Re-execute the query with new parameters
• Use a parameterized query in a master-detail relationship

Using parameters

To assign parameter values in a parameterized query, you must first
create a ParameterRow and add named columns that will hold the values to
be passed to the query.

Any ReadWriteRow, such as ParameterRow, DataSet, and DataRow may be used as
query or procedure parameters. In a ParameterRow, columns can simply be
set up with the addColumns and setColumns methods. DataSet and DataRow
should only be used if they already contain the columns with the wanted
data.

The Row classes are used extensively in the DataExpress APIs. The ReadRow
and ReadWriteRow are used much like interfaces that indicate the usage
intent. By using a class hierarchy, implementation is shared, and there is a
slight performance advantage over using interfaces.

The class hierarchy associated with the DataSet methods is as follows:

java.lang.Object
 +----com.borland.dx.dataset.ReadRow
 +----com.borland.dx.dataset.ReadWriteRow
 +----com.borland.dx.dataset.DataSet
 +----com.borland.dx.dataset.StorageDataSet
 +----com.borland.dx.sql.dataset.QueryDataSet

• StorageDataSet methods deal with data set structure

• DataSet methods handle navigation

• ReadWriteRow methods let you edit columns in the current row

• ReadRow methods give read access to columns in the current row

• TableDataSet and QueryDataSet inherit all these methods.

The Row classes provide access to column values by ordinal and column
name. Specifying columns by name is a more robust and readable way to
write your code. Accessing columns by name is not quite as quick as by
ordinal, but it is still quite fast if the number of columns in your DataSet is
less than twenty, due to some patented high-speed name/ordinal

5-34 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P a r a m e t e r i z e d q u e r i e s : H i n t s & t i p s

matching algorithms. It is also a good practice to use the same strings for
all access to the same column. This saves memory and is easier to enter if
there are many references to the same column.

The ParameterRow is passed in the QueryDescriptor. The query property editor
allows you to select a parameter row. Editing of ParameterRow, such as
adding a column and changing its properties, can be done in the Inspector
or in code.

For example, you create a ParameterRow with two fields, low_no and
high_no. You can refer to low_no and high_no in your parameterized
query, and compare them to any field in the table. See the examples below
for how to use these values in different ways.

In JBuilder, parameterized queries can be run with named parameters,
with parameter markers, or with a master-detail relationship. The
following sections give a brief explanation of each.

• With named parameters:

When the parameter markers in the query are specified with a colon
followed by an alphanumeric name, parameter name matching will be
done. The column in the ParameterRow that has the same name as a
parameter marker will be used to set the parameter value. For example,
in the following SQL statement, values to select are passed as named
parameters:

SELECT * FROM employee where emp_no > :low_no and emp_no < :high_no

In this SQL statement, :low_no and :high_no are parameter markers that
are placeholders for actual values supplied to the statement at run time
by your application. The value in this field may come from a visual
component or be generated programmatically. In design time, the
column’s default value will be used. When parameters are assigned a
name, they can be passed to the query in any order. JBuilder will bind
the parameters to the data set in the proper order at run time.

In the “Tutorial: Parameterizing a query” on page 5-27, two columns
are added to the ParameterRow to hold minimum and maximum values.
The query descriptor specifies that the query should return only values
greater than the minimum value and less than the maximum value.

• With ? JDBC parameter markers:

When the simple question mark JDBC parameter markers are used,
parameter value settings are ordered strictly from left to right.

For example, in the following SQL statement, values to select are
passed as ? JDBC parameters markers:

SELECT * FROM employee WHERE emp_no > ?

In this SQL statement, the “?” value is a placeholder for an actual value
supplied to the statement at run time by your application. The value in

R e t r i e v i n g d a t a f r o m a d a t a s o u r c e 5-35

P a r a m e t e r i z e d q u e r i e s : H i n t s & t i p s

this field may come from a visual component or be generated
programmatically. When a ? JDBC parameter marker is used, values
are passed to the query in a strictly left to right order. JBuilder will bind
the parameters to the source of the values (a ReadWriteRow) in this order
at run time. Binding parameters means allocating resources for the
statement and its parameters both locally and on the server in order to
improve performance when a query is executed.

• With a master-detail relationship:

Master and detail data sets have at least one field in common, by
definition. This field is used as a parameterized query. For more detail
on supplying parameters in this way, see “Parameterized queries in
master-detail relationships” on page 5-35.

Re-executing the parameterized query with new parameters

To re-execute the query with new parameters, set new values in the
ParameterRow and then call QueryDataSet.refresh() to cause the query to be
executed again with new parameter values. For example, to use a UI
component to set the value of a parameter, you can use a SQL statement
such as:

 SELECT * FROM phonelist WHERE lastname LIKE :searchname

In this example, the :searchname parameter’s value could be supplied
from a UI component. To do this, your code would have to:

1 Obtain the value from the component each time it changes

2 Place it into the ParameterRow object

3 Supply that object to the QueryDataSet

4 Call refresh() on the QueryDataSet

See “Tutorial: Parameterizing a query” on page 5-27 for an example of
how to do this with JBuilder sample files.

If the values you want to assign to the query parameter exist in a column of
a data set, you can use that data set as your ReadWriteRow in the
QueryDescriptor, navigate through the data set, and rerun the query for
each value.

Parameterized queries in master-detail relationships

In a master-detail relationship with DelayedDetailFetch set to true (to fetch
details when needed), you can specify a SQL statement such as:

SELECT * FROM employee WHERE country = :job_country

5-36 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P a r a m e t e r i z e d q u e r i e s : H i n t s & t i p s

In this example, :job_country would be the field that this detail data set is
using to link to a master data set. You can specify as many parameters and
master link fields as is necessary. In a master-detail relationship, the
parameter must always be assigned a name that matches the name of the
column. For more information about master-detail relationships and the
DelayedDetailFetch parameter, see Chapter 9, “Establishing a master-detail
relationship.”

In a master-detail descriptor, binding is done implicitly. Implicit binding
means that the data values are not actually supplied by the programmer,
they are retrieved from the master row and implicitly bound when the
detail query is executed. Binding parameters means allocating resources
for the statement and its parameters both locally and on the server in
order to improve performance when a query is executed.

If the values you want to assign to the query parameter exist in a column of
a data set (the master data set), you can use that data set as your
ReadWriteRow in the QueryDescriptor, navigate through the data set, and
rerun the query for each value to display in the detail data set.

U s i n g s t o r e d p r o c e d u r e s 6-1

C h a p t e r

6
Chapter6Using stored procedures

Database application
development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

With a stored procedure, one or more SQL statements are encapsulated in
a single location on your server and can be run as a batch. ProcedureDataSet
components enable you to access, or provide, data from your database
with existing stored procedures, invoking them with either JDBC
procedure escape sequences or server-specific syntax for procedure calls.
To run a stored procedure against a SQL table where the output is a set of
rows, you need the following components. You can provide this
information programmatically, or by using JBuilder design tools.

• The Database component encapsulates a database connection through
JDBC to the SQL server and also provides lightweight transaction
support.

• The ProcedureDataSet component provides the functionality to run the
stored procedure (with or without parameters) against the SQL
database and stores the results from the execution of the stored
procedure.

• The ProcedureDescriptor object stores the stored procedure properties,
including the database to be queried, the stored procedures, escape
sequences, or procedure calls to execute, and any optional stored
procedure parameters.

When providing data from JDBC data sources, the ProcedureDataSet has
built-in functionality to fetch data from a stored procedure that returns a

6-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e s

cursor to a result set. The following properties of the ProcedureDescriptor
object affect the execution of stored procedures:

A ProcedureDataSet can be used to run stored procedures with and without
parameters. A stored procedure with parameters can acquire the values
for its parameters from any DataSet or ParameterRow. The section “Example:
Using parameters with Oracle PL/SQL stored procedures” on page 6-10
provides an example.

Use Database Pilot to browse and edit database server-specific schema
objects, including tables, fields, stored procedure definitions, triggers, and
indexes. For more information on Database Pilot, select Tools|Database
Pilot and refer to its online help.

The following topics related to stored procedure components are covered:

• Tutorial: Retrieving data using stored procedures

• Discussion of stored procedure escape sequences, SQL statements, and
server-specific procedure calls

• Example: using InterBase stored procedures

• Example: using parameters with Oracle PL/SQL stored procedures

• Using Sybase stored procedures

Property Purpose

database Specifies what Database connection object to run the procedure
against.

procedure A Java String representation of a stored procedure escape sequence
or SQL statement that causes a stored procedure to be executed.

parameters An optional ReadWriteRow from which to fill in parameters. These
values can be acquired from any DataSet or ReadWriteRow.

executeOnOpen Causes the ProcedureDataSet to execute the procedure when it is first
opened. This is useful for presenting live data at design time. You
may also want this enabled at run time. The default value is true.

loadOption An optional integer value that defines the method of loading data
into the data set. Options are:
• Load All Rows: load all data up front.
• Load Rows Asynchronously: causes the fetching of DataSet rows

to be performed on a separate thread. This allows the DataSet data
to be accessed and displayed as the QueryDataSet is fetching rows
from the database connection.

• Load As Needed: load the rows as they are needed.
• Load 1 Row At A Time: load as needed and replace the previous

row with the current. Useful for high-volume batch-processing
applications.

U s i n g s t o r e d p r o c e d u r e s 6-3

T u t o r i a l : R e t r i e v i n g d a t a u s i n g s t o r e d p r o c e d u r e s

Tutorial: Retrieving data using stored procedures
This tutorial shows how to provide data to an application using JBuilder’s
UI designer and a ProcedureDataSet component. This example also
demonstrates how to attach the resulting data set to a JdbTable and a
JdbNavToolBar for data viewing and editing.

The finished example for this tutorial may be available as a completed
project in the /samples/DataExpress/SimpleStoredProcedure directory
of your JBuilder installation. Other sample applications referencing stored
procedures on a variety of servers are available in the
/samples/DataExpress/ServerSpecificProcedures directory, and a
sample of providers is available in the
/samples/DataExpress/CustomProviderResolver directory.

Creating tables and procedures for the tutorial

These steps run a stored procedure that creates a table and insert, update,
and delete procedures on the InterBase server (make sure have followed
the setup instructions in “Setting up InterBase and InterClient” on
page 3-4). This procedure is written in the InterBase language. These
procedures will be used both in this section and in the “Tutorial: Saving
changes using a QueryResolver” on page 8-6 and “Tutorial: Saving
changes with a ProcedureResolver” on page 8-9.

1 InterBase Server and InterServer should be running on the same
machine, unless it has been turned off.

2 Select File|Close All from the menu to close existing projects.

3 Select File|Open and open the project ProcedureSetUp.jpr, which is
located in the
/jbuilder/samples/DataExpress/SimpleStoredProcedure/ProcedureSetup
directory of your JBuilder installation. If the project is not available or if
you would like to explore the CreateProcedures.java file, see the section
“Creating tables and procedures for the tutorial manually” on page 6-8.

4 Select Project|Properties.

5 Select the Required Libraries tab. Select InterClient. This option will be
available if you have set it up as in “Adding a JDBC driver to JBuilder”
on page 3-7.

6 Double-click CreateProcedures.java in the project pane and edit the path
to the InterBase employee.gdb file to be that on your computer. (Use
forward slashes in the path.)

7 Save the file, then right-click CreateProcedures.java in the project pane,
and select Run. This step creates the tables and procedures on the
server.

6-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : R e t r i e v i n g d a t a u s i n g s t o r e d p r o c e d u r e s

8 Select Tools|Database Pilot to verify that the tables and procedures are
created.

9 Select File|Close Project from the menu.

Adding the DataSet components

To create this application and populate a data set using the stored
procedure,

1 Select File|New and double-click the Application icon. Accept all
defaults, or modify the path and project name to make them more
descriptive.

2 Select Project Properties, and click the Required Libraries tab.

3 Add InterClient. This option will be available if you have set it up as in
“Adding a JDBC driver to JBuilder” on page 3-7.

4 Close the dialog.

5 Select the Design tab to activate the UI designer

6 Select the Database component on the Data Express tab of the
component palette, and click anywhere in the component tree.

7 Open the connection property editor for the Database component by
selecting the connection property ellipsis button in the Inspector. Set the
connection properties to the InterBase sample tables by setting the
properties as indicated in the following table. These steps assume you
have completed “Setting up InterBase and InterClient” on page 3-4.

The connection dialog includes a Test Connection button. Click this
button to check that the connection properties have been correctly set.
Results of the connection attempt are displayed beside the button.
When the text indicates Success, click OK to close the dialog.

The code generated by the designer for this step can be viewed by
selecting the Source tab and looking for the ConnectionDescriptor. Select
the Design tab to continue.

Property name Value

Driver interbase.interclient.Driver

URL jdbc:interbase://<IP address or localhost>/<path to .gdb file>

Username SYSDBA

Password masterkey

U s i n g s t o r e d p r o c e d u r e s 6-5

T u t o r i a l : R e t r i e v i n g d a t a u s i n g s t o r e d p r o c e d u r e s

8 Place a ProcedureDataSet component from the Data Express tab of the
component palette on the content pane. Set the procedure property of the
ProcedureDataSet as follows:

Several procedures were created when CreateProcedures.java was run.
The procedure GET_COUNTRIES is the one that will return a result set.
The SELECT statement is how a procedure is called in the InterBase
language. The other procedures will be used for resolving data in the
topic “Tutorial: Saving changes with a ProcedureResolver” on page 8-9.

Tip You can use the Browse Procedures button in future projects to learn
what stored procedures are available. See “Discussion of stored
procedure escape sequences, SQL statements, and server-specific
procedure calls” on page 6-7 for more information.

Click Test Procedure to ensure that the procedure is runnable. When
the gray area beneath the button indicates Success as shown below, click
OK to close the dialog.

The code generated by this step is can be viewed by selecting the
Source tab and looking for setProcedure. Click the Design tab to
continue.

Adding visual components
This topic shows how to create a UI for your application using dbSwing
components.

1 Select contentPane(BorderLayout) in the component tree.

Property name Value

Database database1

Stored Procedure Escape or SQL Statement SELECT * FROM GET_COUNTRIES

6-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S t o r e d p r o c e d u r e s : H i n t s & t i p s

2 Click on the JdbNavToolBar component on the dbSwing tab of the
component palette, and drop the component in the area at the top of the
panel in the UI designer. Set its constraints property to NORTH.
jdbNavToolBar1 automatically attaches itself to whichever DataSet has
focus.

3 Drop a JdbStatusLabel in the area at the bottom of the panel in the UI
designer and set its constraints property to SOUTH. jdbStatusLabel1
automatically attaches itself to whichever DataSet has focus.

4 Drop a TableScrollPane component from the dbSwing tab to the center
of the panel in the UI designer. Make sure its constraints property is set
to CENTER.

5 Select tableScrollPane1 and drop a JdbTable into the center of it. Set its
dataSet property to procedureDataSet1.

6 Select Run|Run Project to run the application and browse the data set.

The running application looks like this:

By default, the Save Changes button on the toolbar will save changes
using a default QueryResolver. To customize the resolving capability in
your application in order to edit, insert, and delete data in the running
application, see

• “Tutorial: Saving changes using a QueryResolver” on page 8-6
• “Tutorial: Saving changes with a ProcedureResolver” on page 8-9

Stored procedures: Hints & tips
This set of topics includes tips to help you

• Understand the options for using a stored procedure
• Create the procedures used in the tutorial

U s i n g s t o r e d p r o c e d u r e s 6-7

S t o r e d p r o c e d u r e s : H i n t s & t i p s

Discussion of stored procedure escape sequences, SQL
statements, and server-specific procedure calls

When entering information in the Stored Procedure Escape or SQL
Statement field in the procedure property editor, or in code, you have three
options for the type of statement to enter. These are

• Select an existing procedure.

To browse the database for an existing procedure, click Browse
Procedures in the procedure property editor. A list of available
procedure names for the database you are connected to is displayed. If
the server is InterBase and you select a procedure that does not return
data, you receive a notice to that effect. If you select a procedure that
does return data, JBuilder attempts to generate the correct escape
syntax for that procedure call. However, you may need to edit the
automatically-generated statement to correspond correctly to your
server’s syntax. For other databases, only the procedure name is
inserted from the Select Procedure dialog.

If the procedure is expecting parameters, you have to match these with
the column names of the parameters.

• Enter a JDBC procedure escape sequence.

To enter a JDBC procedure escape sequence, use the following
formatting:

• {call PROCEDURENAME (?,?,?,...)} for procedures
• {?= call FUNCTIONNAME (?,?,?,...)} for functions

• Enter server-specific syntax for procedure calls.

When a server allows a separate syntax for procedure calls, you can
enter that syntax instead of an existing stored procedure or JDBC
procedure escape sequence. For example, server-specific syntax may
look like this:

• execute procedure PROCEDURENAME ?,?,?

In both of the last two examples, the parameter markers, or question
marks, may be replaced with named parameters of the form
:ParameterName. For an example using named parameters, see “Example:
Using parameters with Oracle PL/SQL stored procedures” on page 6-10.
For an example using InterBase stored procedures, see “Example: Using
InterBase stored procedures” on page 6-10.

6-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S t o r e d p r o c e d u r e s : H i n t s & t i p s

Creating tables and procedures for the tutorial manually

Stored procedures consist of a set of SQL statements. These statements can
easily be written and compiled in JBuilder by creating a Java file, entering
the statements, then compiling the code. If you do not have access to the
sample project SimpleStoredProcedure or if you would like to learn how
to create a table and insert, update, and delete procedures from JBuilder,
follow these steps:

1 Select File|Close All from the menu.

2 Select File|New Project.

3 Change the file directory and project name to
SimpleStoredProcedure/ProcSetUp/ProcSetUp.jpr in the Project Wizard.

4 Select File|New, then select Class.

5 Change the Class Name to ProcSetUp in the Class wizard. Click OK to
create the file ProcSetUp.java.

6 Edit the code in the Source window or copy and paste from online help
to match the code below:

package ProcSetUp;

import com.borland.dx.dataset.*;
import com.borland.dx.sql.dataset.*;
import java.sql.*;

public class CreateProcedures {

 public static void main(String[] args) throws DataSetException {
 Database database1 = new Database();
 database1.setConnection(new ConnectionDescriptor("jdbc:interbase:

//<IP address or localhost>/<path to .gdb file>", "SYSDBA",
"masterkey", false, "interbase.interclient.Driver"));

 try { database1.executeStatement("DROP PROCEDURE GET_COUNTRIES"); }
catch (Exception ex) {};

 try { database1.executeStatement("DROP PROCEDURE UPDATE_COUNTRY"); }
 catch (Exception ex) {};

 try { database1.executeStatement("DROP PROCEDURE INSERT_COUNTRY"); }
 catch (Exception ex) {};

 try { database1.executeStatement("DROP PROCEDURE DELETE_COUNTRY"); }
 catch (Exception ex) {};

 database1.executeStatement(getCountriesProc);
 database1.executeStatement(updateProc);
 database1.executeStatement(deleteProc);
 database1.executeStatement(insertProc);
 database1.closeConnection();
 }

U s i n g s t o r e d p r o c e d u r e s 6-9

S t o r e d p r o c e d u r e s : H i n t s & t i p s

 static final String getCountriesProc =

"CREATE PROCEDURE GET_COUNTRIES RETURNS (/r/n"+
" COUNTRY VARCHAR(15), /r/n"+
" CURRENCY VARCHAR(10)) AS /r/n"+
"BEGIN /r/n"+
" FOR SELECT c.country, c.currency /r/n"+
" FROM country c /r/n"+
" INTO :COUNTRY,:CURRENCY /r/n"+
" DO /r/n"+
" BEGIN /r/n"+
" SUSPEND; /r/n"+
" END /r/n"+
"END;";

 static final String updateProc =

"CREATE PROCEDURE UPDATE_COUNTRY(/r/n"+
" OLD_COUNTRY VARCHAR(15), /r/n"+
" NEW_COUNTRY VARCHAR(15), /r/n"+
" NEW_CURRENCY VARCHAR(20)) AS /r/n"+
"BEGIN /r/n"+
" UPDATE country /r/n"+
" SET country = :NEW_COUNTRY /r/n"+
" WHERE country = :OLD_COUNTRY; /r/n"+
"END;";

 static final String insertProc =

"CREATE PROCEDURE INSERT_COUNTRY(/r/n"+
" NEW_COUNTRY VARCHAR(15), /r/n"+
" NEW_CURRENCY VARCHAR(20)) AS /r/n"+
"BEGIN /r/n"+
" INSERT INTO country(country,currency) /r/n"+
" VALUES (:NEW_COUNTRY,:NEW_CURRENCY); /r/n"+
"END;";

 static final String deleteProc =

"CREATE PROCEDURE DELETE_COUNTRY(/r/n"+
" OLD_COUNTRY VARCHAR(15)) AS /r/n"+
"BEGIN /r/n"+
" DELETE FROM country /r/n"+
" WHERE country = :OLD_COUNTRY; /r/n"+
"END;";
}

6-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S t o r e d p r o c e d u r e s : I n t e r B a s e , O r a c l e , a n d S y b a s e s p e c i f i c i n f o r m a t i o n

7 Right-click ProcSetUp.java in the project pane, then select Run. This step
creates the tables and procedures on the server.

8 Select File|Close from the menu.

This is a very simple procedure. For tips on writing more complex stored
procedures, consult your database documentation.

Stored procedures: InterBase, Oracle, and Sybase specific
information

This set of topics includes tips to help you use

• InterBase stored procedures
• Oracle PL/SQL stored procedures
• Sybase stored procedures

Example: Using InterBase stored procedures

In InterBase, the SELECT procedures may be used to generate a DataSet. In
the InterBase sample database, employee.gdb, the stored procedure
ORG_CHART is such a procedure. To call this procedure from JBuilder,
enter the following syntax in the Stored Procedure Escape or SQL
StatCODEent field in the procedure property editor, or in code:

select * from ORG_CHART

For a look at more complicated InterBase stored procedures, use Database
Pilot to browse procedures on this server. ORG_CHART is an interesting
example. It returns a result set that combines data from several tables.
ORG_CHART is written in InterBase’s procedure and trigger language,
which includes SQL data manipulation statements plus control structures
and exception handling.

The output parameters of ORG_CHART turn into columns of the
produced DataSet.

See the InterBase Server documentation for more information on writing
InterBase stored procedures or see “Creating tables and procedures for the
tutorial manually” on page 6-8 for an example of a stored procedure
written in InterBase.

Example: Using parameters with Oracle PL/SQL
stored procedures

Currently, a ProcedureDataSet can only be populated with Oracle PL/SQL
stored procedures if you are using Oracle’s type-2 or type-4 JDBC drivers.

U s i n g s t o r e d p r o c e d u r e s 6-11

S t o r e d p r o c e d u r e s : I n t e r B a s e , O r a c l e , a n d S y b a s e s p e c i f i c i n f o r m a t i o n

The stored procedure that is called must be a function with a return type
of CURSOR REF.

Follow this general outline for using Oracle stored procedures in JBuilder:

1 Define the function using PL/SQL. The following is an example of a
function description defined in PL/SQL that has a return type of
CURSOR REF. This example assumes that a table named MyTable1
exists.

create or replace function MyFct1(INP VARCHAR2) RETURN rcMyTable1 as
 type rcMyTable1 is ref cursor return MyTable1%ROWTYPE;
 rc rcMyTable;
begin
 open rc for select * from MyTable1;
 return rc;
end;

2 Set up a ParameterRow to pass to the ProcedureDescriptor. The input
parameter INP should be specified in the ParameterRow, but the special
return value of a CURSOR REF should not. JBuilder will use the output
of the return value to fill the ProcedureDataSet with data. An example for
doing this with a ParameterRow follows.

ParameterRow row = new ParameterRow();
row.addColumn("INP", Variant.STRING, ParameterType.IN);
row.setString("INP", "Input Value");
String proc = "{?=call MyFct1(?)}";

3 Select the Frame file in the project pane, then select the Design tab.

4 Place a ProcedureDataSet from the Data Express tab to the content pane.

5 Select the procedure property to bring up the ProcedureDescriptor dialog.

6 Select database1 from the Database drop-down list.

7 Enter the following escape syntax in the Stored Procedure Escape or
SQL Statement field, or in code:

{?=call MyFct1(?)}

8 Select the Parameters tab of the dialog. Select the ParameterRow just
defined as row.

See your Oracle server documentation for information on the Oracle
PL/SQL language.

Using Sybase stored procedures

Stored procedures created on Sybase servers are created in a “chained”
transaction mode. In order to call Sybase stored procedures as part of a
ProcedureResolver, the procedures must be modified to run in an unchained
transaction mode. To do this, use the Sybase stored system procedure

6-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

W r i t i n g a c u s t o m d a t a p r o v i d e r

sp_procxmode to change the transaction mode to either “anymode” or
“unchained”. For more details, see the Sybase documentation.

Browsing sample applications that use stored procedures

In the /samples/DataExpress/ServerSpecificProcedures directory of your
JBuilder installation, you can browse a sample application with sample
code for Sybase, InterBase, and Oracle databases.

Writing a custom data provider
JBuilder makes it easy to write a custom provider for your data when you
are accessing data from a custom data source, such as SAP, BAAN, IMS,
OS/390, CICS, VSAM, DB2, etc.

The retrieval and update of data from a data source, such as an Oracle or
Sybase server, is isolated to two key interfaces: providers and resolvers.
Providers populate a data set from a data source. Resolvers save changes
back to a data source. By cleanly isolating the retrieval and updating of
data to two interfaces, it is easy to create new provider/resolver
components for new data sources. JBuilder currently provides
implementations for standard JDBC drivers that provide access to popular
databases such as support for Oracle, Sybase, Informix, InterBase, DB2,
MS SQL Server, Paradox, dBASE, FoxPro, Access, and other popular
databases. These include:

• OracleProcedureProvider
• ProcedureProvider
• ProcedureResolver
• QueryProvider
• QueryResolver

You can create custom provider/resolver component implementations for
EJB, application servers, SAP, BAAN, IMS, CICS, etc.

An example project with a custom provider and resolver is located in the
/samples/DataExpress/CustomProviderResolver directory of your
JBuilder installation. The sample file TestFrame.java is an application with
a frame that contains a JdbTable and a JdbNavToolBar. Both visual
components are connected to a TableDataSet component where data is
provided from a custom Provider (defined in the file ProviderBean.java),
and data is saved with a custom Resolver (defined in the file
ResolverBean.java). This sample application reads from and saves
changes to the text file data.txt, a simple non-delimited text file. The
structure of data.txt is described in the interface file DataLayout.java.

This topic discusses custom data providers, and how they can be used as
providers for a TableDataSet and any DataSet derived from TableDataSet.

U s i n g s t o r e d p r o c e d u r e s 6-13

W r i t i n g a c u s t o m d a t a p r o v i d e r

The main method to implement is
provideData(com.borland.dx.dataset.StorageDataSet dataSet, boolean toOpen).
This method accesses relevant metadata and loads the actual data into the
data set.

Obtaining metadata

Metadata is information about the data. Examples of metadata are column
name, table name, whether the column is part of the unique row id or not,
whether it is searchable, its precision, scale, and so on. This information is
typically obtained from the data source. The metadata is then stored in
properties of Column components for each column in the StorageDataSet, and
in the StorageDataSet itself.

When you obtain data from a data source, and store it in one of the
subclasses of StorageDataSet, you typically obtain not only rows of data
from the data source, but also metadata. For example, the first time that
you ask a QueryDataSet to perform a query, by default it runs two queries:
one for metadata discovery and the second for fetching rows of data that
your application displays and manipulates. Subsequent queries
performed by that instance of QueryDataSet only do row data fetching.
After discovering the metadata, the QueryDataSet component then creates
Column objects automatically as needed at run time. One Column is created
for every query result column that is not already in the QueryDataSet. Each
Column then gets some of its properties from the metadata, such as
columnName, tableName, rowId, searchable, precision, scale, and so on.

When you are implementing the abstract provideData() method from the
Provider class, the columns from the data provided may need to be added
to your DataSet. This can be done by calling the ProviderHelp.initData()
method from inside your provideData() implementation. Your provider
should build an array of Columns to pass to the ProviderHelp.initData()
method. The following is a list of Column properties that a Provider should
consider initializing:

• columnName
• dataType

and optionally:

• sqlType
• precision (used by DataSet)
• scale (used by DataSet)
• rowId
• searchable
• tableName
• schemaName
• serverColumnName

6-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

W r i t i n g a c u s t o m d a t a p r o v i d e r

The optional properties are useful when saving changes back to a data
source. The precision and scale properties are also used by DataSet
components for constraint and display purposes.

Invoking initData
The arguments to the
ProviderHelp.initData(com.borland.dx.dataset.StorageDataSet dataSet,
com.borland.dx.dataset.Column[] columns, boolean updateColumns,
boolean keepExistingColumns, boolean emptyRows) method are
explained below.

• dataSet is the StorageDataSet we are providing to

• metaDataColumns is the Column array created with the proper properties
that do not need to be added/merged into the Columns that already exist
in DataSet

• updateColumns specifies whether to merge columns into existing
persistent columns that have the same columnName property setting

• keepExistingColumns specifies whether to keep any non-persistent
columns

If keepExistingColumns is true, non-persistent columns are also retained.
Several column properties in the columns array are merged with existing
columns in the StorageDataSet that have the same name property setting. If
the number, type, and position of columns is different, this method may
close the associated StorageDataSet.

The metaDataUpdate property on StorageDataSet is investigated when
ProviderHelp.initData is called. This property controls which Column
properties override properties in any persistent columns that are present
in the TableDataSet before ProviderHelp.initData is called. Valid values for
this property are defined in the MetaDataUpdate interface.

Obtaining actual data

Certain key DataSet methods cannot be used when the Provider.provideData
method is called to open a DataSet, while the DataSet is in the process of
being opened, including the StorageDataSet.insertRow() method.

In order to load the data, use the StorageDataSet.startLoading method. This
method returns an array of Variant objects for all columns in a DataSet. You
set the value in the array (the ordinal values of the columns are returned
by the ProviderHelp.initData method), then load each row by calling the
StorageDataSet.loadRow() method, and finish by calling the
StorageDataSet.endLoading() method.

U s i n g s t o r e d p r o c e d u r e s 6-15

W r i t i n g a c u s t o m d a t a p r o v i d e r

Tips on designing a custom data provider
A well designed provider recognizes the maxRows and maxDesignRows
properties on StorageDataSet. The values for these properties are:

To determine if the provideData() method was called while in design
mode, call java.beans.Beans.isDesignTime().

Understanding the provideData method in master-detail data sets
The Provider.provideData method is called

• when the StorageDataSet is initially opened (toOpen is true)

• when StorageDataSet.refresh() is called

• when a detail data set with the fetchAsNeeded property set to true needs
to be loaded

When a detail data set with the fetchAsNeeded property set to true needs to
be loaded, the provider ignores provideData during the opening of the data,
or just provides the metadata. The provider also uses the values of the
masterLink fields to provide the rows for a specific detail data set.

Value Description

0 provide metadata information only

-1 provide all data
n provide maximum of n rows

6-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o l u m n s 7-1

C h a p t e r

7
Chapter7Working with columns

A Column is the collection of one type of information (for example, a
collection of phone numbers or job titles). A collection of Column
components are managed by a StorageDataSet.

A Column object can be created explicitly in your code, or generated
automatically when you instantiate the StorageDataSet subclass, for
example, by a QueryDataSet when a query is executed. Each Column contains
properties that describe or manage that column of data. Some of the
properties in Column hold metadata (defined below) that is typically
obtained from the data source. Other Column properties are used to control
its appearance and editing in data-aware components.

Note Abstract or superclass class names are often used to refer generally to all
their subclasses. For example, a reference to a StorageDataSet object implies
any one (or all, depending on its usage) of its subclasses QueryDataSet,
TableDataSet, ProcedureDataSet, and DataSetView.

Understanding Column properties and metadata
Most properties on a Column can be changed without closing and
re-opening a DataSet. However, the following properties cannot be set
unless the DataSet is closed:

• columnName
• dataType
• calcType
• pickList
• preferredOrdinal

The UI designer will do live updates for Column display-oriented properties
such as color, width, and caption. For more information on obtaining

7-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C o l u m n p r o p e r t i e s a n d m e t a d a t a

metadata, see “Obtaining metadata” on page 6-13. For more discussion on
obtaining actual data, see “Obtaining actual data” on page 6-14.

Non-metadata Column properties
Columns have additional properties that are not obtained from metadata
that you may want to set, for example, caption, editMask, displayMask,
background and foreground colors, and alignment. These types of properties
are typically intended to control the default appearance of this data item in
data-aware components, or to control how it can be edited by the user. The
properties you set in an application are usually of the non-metadata type.

Viewing column information in the Column designer
One way to view column properties information is by using the Column
designer. The Column designer displays information for selected
properties, such as the data type for the column, in a navigable table.
Changing, or setting, a property in the Column designer makes a column
persistent. The column properties can be modified in the Column designer
or in the Inspector. You can change which properties display in the
Column designer by clicking the Properties button.

To display the Column designer,

1 Open any project that includes a DataSet object. In this example, select
/samples/DataExpress/QueryProvider/QueryProvider.jpr from your
JBuilder installation.

2 Double-click the file QueryProvideFrame.java file and click the Design
tab from the bottom of the right pane of the AppBrowser.

3 Right-click the queryDataSet1 object in the content pane, select Activate
Designer. This displays the Column designer for the data set in the
Design window. The Column designer looks like this for the
EMPLOYEE sample table:

W o r k i n g w i t h c o l u m n s 7-3

U n d e r s t a n d i n g C o l u m n p r o p e r t i e s a n d m e t a d a t a

To set a property for a column, select that Column and enter or select a new
value for that property. The Inspector updates to reflect the properties
(and events) of the selected column. For example,

1 Select the Properties button, and select the min property to display in the
Column designer.

2 Scroll to the min column, enter today’s date for the HIRE_DATE field.

3 Press Enter to change the value.

To close the Column designer, select any UI component in the content
pane, or right-click a different component, and select Activate Designer. In
other words, the only way to close one designer is to open a different one.

See the topic “Ensuring data persistence” on page 14-23 for more
information on using the Column designer.

The Generate RowIterator Class button

The RowIterator Generator in the Column designer can be used to create a
new RowIterator class or update an existing RowIterator class for a DataSet.
It looks at the columnName property of all the Columns in the DataSet, and
generates get and set methods for each column.

Selecting the RowIterator Generator button opens a dialog that provides
lightweight (low memory usage and fast binding) iteration capabilities to
ensure static type-safe access to columns.

The options in the RowIterator dialog have the following purposes:

Table 7.1 RowIterator Generator dialog

Option Description

Extend RowIterator If set, the generated class will extend RowIterator.
This will surface all methods in RowIterator. If this
is false, a new class with a RowIterator member
will be created, and which is delegated for all
operations. The advantage of not extending
RowIterator is that your iterator class can control
what gets exposed. The advantage of extending
RowIterator is that less code needs to be generated
due to the fact that binder and navigation
methods are inherited and do not need to be
delegated to.

Remove Underscore; Capitalize
Next Letter

This affects how the get and set method names
are generated from the columnName property of the
Column. If this option is set, underscores are
removed and the character following the
underscore is capitalized.

7-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C o l u m n p r o p e r t i e s a n d m e t a d a t a

For more information on RowIterators, see the DataExpress Component
Library Reference.

Using the Column designer to persist metadata

Pressing the Persist All Metadata button in the Column designer will
persist all the metadata that is needed to open a QueryDataset at run time.

The source will be changed with these settings:

• The query of the QueryDataSet will be changed to include row identifier
columns.

• The metaDataUpdate property of the QueryDataSet will be set to NONE.

• The tableName, schemaName, and resolveOrder properties on the
QueryDataSet will be set, if needed.

• All columns will be persisted, with miscellaneous properties set. These
properties are precision, scale, rowId, searchable, tableName, schemaName,
hidden, serverColumnName, and sqlType.

JBuilder fetches metadata automatically. Because some JDBC drivers are
slow at responding to metadata inquiries, you might want to persist
metadata and tell DataExpress not to fetch it. With JBuilder setting this up
at design time, and generating the necessary code for run time,
performance will be improved.

See also
“Persisting query metadata” on page 5-25

Making metadata dynamic using the Column designer

Warning Pressing the Make All Metadata Dynamic button will REMOVE CODE
from the source file. It will remove all the code from the property settings
mentioned in the previous topic, as well as any settings of the

Generate binder methods Generates delegator methods to call the
embedded RowIterator bind methods.

Generate navigation methods Generates delegator methods to call the
embedded RowIterator navigation methods.

Table 7.1 RowIterator Generator dialog

Option Description

W o r k i n g w i t h c o l u m n s 7-5

U n d e r s t a n d i n g C o l u m n p r o p e r t i e s a n d m e t a d a t a

metadata-related properties named above. However, other properties, like
editMask will not be touched.

Note To update a query after the table may have changed on the server, you
must first make the metadata dynamic, then persist it, in order to use new
indices created on the database table.

Viewing column information in the Database Pilot

The Database Pilot is an all-Java, hierarchical database browser that also
allows you to edit data. It presents JDBC-based meta-database
information in a two-paned window. The left pane contains a tree that
hierarchically displays a set of databases and its associated tables, views,
stored procedures, and metadata. The right pane is a multi-page display
of descriptive information for each node of the tree.

To display the Database Pilot, select Tools|Database Pilot from the
JBuilder menu.

When a database URL is opened, you can expand the tree to display child
objects. Columns are child objects of a particular database table. As in the
figure above, when the Column object is selected for a table, the Summary
page in the right pane lists the columns, their data type, size, and other
information.

7-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

O p t i m i z i n g a q u e r y

Select a column in the left pane to see just the information for that field, as
in the figure below.

For more information on using the Database Pilot, see its online help.

Optimizing a query

Setting column properties

You can set Column properties through the JBuilder visual design tools or in
code manually. Any column that you define or modify through the visual
design tools will be persistent.

• Setting Column properties using JBuilder’s visual design tools

The Inspector allows you to work with Column properties. To set Column
properties:

1 Open (or create) a project that contains a StorageDataSet that you
want to work with. If you are creating a new project, you could
follow the “Tutorial: Querying a database using the JBuilder UI” on
page 5-16 for an example.

2 Open the UI designer by double-clicking the Frame container object in
the project pane, and then clicking the Design tab in the
AppBrowser.

3 In the content pane, select the StorageDataSet component.

4 Click the expand icon beside the StorageDataSet to display its
columns.

5 Select the Column you want to work with. The Inspector displays the
column’s properties and events. Set the properties you want.

W o r k i n g w i t h c o l u m n s 7-7

O p t i m i z i n g a q u e r y

• Setting properties in code

To set properties manually in your source code on one or more
columns in a StorageDataSet:

1 Provide data to the StorageDataSet. For example, run a query using a
QueryDataSet component. See the “Tutorial: Querying a database
using the JBuilder UI” on page 5-16 for an example.

2 Obtain an array of references to the existing Column objects in the
StorageDataSet by calling the getColumn(java.lang.String) method of
the ReadRow.

3 Identify which column(s) in the array you want to work with by
reading their properties, for example using the getColumnName()
property of the Column component.

4 Set the properties on the appropriate columns as needed.

Note If you want the property settings to remain in force past the next time
that data is provided, you must set the column’s persist property to
true. This is described in the following section.

Persistent columns

A persistent column is a Column object which was already part of a
StorageDataSet, and whose persist property was set to true before data was
provided. If the persist property is set after data is provided, you must
perform another setQuery command with a new queryDescriptor for the
application to recognize that the columns are persistent. A persistent
Column allows you to keep Column property settings across a data-provide
operation. A persistent column does not cause the data in that column of
the data rows to freeze across data provide operations.

Normally, a StorageDataSet automatically creates new Column objects for
every column found in the data provided by the data source. It discards
any Column objects that were explicitly added previously, or automatically
created for a previous batch of data. This discarding of previous Column
objects could cause you to lose property settings on the old Column which
you might want to retain.

To avoid this, mark a Column as persistent by setting its persist property to
true. When a column is persistent, the Column is not discarded when new
data is provided to the StorageDataSet. Instead, the existing Column object is
used again to control the same column in the newly-provided data. The
column matching is done by column name.

Any column that you define or modify through the visual design tools
will be persistent. Persistent columns are discussed more thoroughly in
“Ensuring data persistence” on page 14-23. You can create Column objects

7-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

O p t i m i z i n g a q u e r y

explicitly and attach them to a StorageDataSet, using either addColumn() to
add a single Column, or setColumns() to add several new columns at one
time.

When using addColumn, you must set the Column to persistent prior to
obtaining data from the data source or you will lose all of the column’s
property settings during the provide. The persist property is set
automatically with the setColumns method.

Note The UI designer calls the StorageDataSet.setColumns() method when
working with columns. If you want to load and modify your application
in the UI designer, use the setColumns method so the columns are
recognized at design time. At run time, there is no difference between
setColumns and addColumn.

Combining live metadata with persistent columns

During the providing phase, a StorageDataSet first obtains metadata from
the data source, if possible. This metadata is used to update any existing
matching persistent columns, and to create other columns that might be
needed. The metaDataUpdate property of the StorageDataSet class controls the
extent of the updating of metadata on persistent columns.

Removing persistent columns

This section describes how to undo column persistence so that a modified
query no longer returns the (unwanted) columns in a StorageDataSet.

When you have a QueryDataSet or TableDataSet with persistent columns,
you declare that these columns will exist in the resulting DataSet whether
or not they still exist in the corresponding data source. But what happens
if you no longer want these persistent columns?

When you alter the query string of a QueryDataSet, your old persistent
columns are not lost. Instead, the new columns obtained from running the
query are appended to your list of columns. You may make any of these
new columns persistent by setting any of their properties.

Note When you expand a StorageDataSet by clicking its expand icon in the
content pane, the list of columns does not change automatically when you
change the query string. To refresh the columns list based on the results of
the modified query, double click the QueryDataSet in the content pane. This
executes the query again and appends any new columns found in the
modified query.

To delete a persistent column you no longer need, select it in the content
pane and press the Delete key, or select the column in the Column designer

W o r k i n g w i t h c o l u m n s 7-9

O p t i m i z i n g a q u e r y

and click the Delete button on the toolbar. This causes the following
actions:

• The column is marked as non-persistent.

• Any code that sets properties of this column is removed.

• Any event handler logic you may have placed on this column is
removed.

To verify that a deleted persistent column is no longer part of the
QueryDataSet, double-click the data set in the content pane. This re-executes
the query and displays all the columns in the resulting QueryDataSet.

Using persistent columns to add empty columns to a DataSet
On occasion you may want to add one or more extra columns to a
StorageDataSet, columns that are not provided from the data source and
that are not intended to be resolved back to the data source. For example,
you might

• Need an extra column for internal utility purposes. If you want to hide
the column from displaying in data-aware components, set the visible
property of the Column to false.

• Construct a new DataSet manually by adding the columns you want
before computing the data stored in its rows.

• Construct a new DataSet to store data from a custom data source that
isn’t supported by JBuilder’s providers and therefore doesn’t provide
metadata automatically.

In such cases, you can explicitly add a Column to the DataSet, before or after
providing data. The columnName must be unique and cannot duplicate a
name that already exists in the provided data. Additionally, if you will be
providing data after adding the Column, be sure to mark the Column
persistent so that the Column is not discarded when new data is provided.

To add a column manually in source code, follow the instructions in
“Persistent columns” on page 7-7.

To add a column manually using the JBuilder visual design tools:

1 Follow the first 3 steps in “Setting Column properties using JBuilder’s
visual design tools” on page 7-6 to obtain the metadata into the
columns listed in the content pane. (You can skip the steps for
providing data if you want to add columns to an empty DataSet.)

2 Select <new column>. This option appears at the bottom of the list of
columns.

3 In the Inspector, set the columnName, making sure that it is different from
existing column names.

4 Set any other properties as needed for this new column.

7-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

O p t i m i z i n g a q u e r y

JBuilder creates code for a new persistent Column object and attaches it to
your DataSet. The new Column exists even before the data is provided.
Because its name is dissimilar from any provided column names, this
Column is not populated with data during the providing phase; all rows in
this Column have null values.

Controlling column order in a DataSet

When a StorageDataSet is provided data, it

• Deletes any non-persistent columns, moving the persistent columns to
the left.

• Merges columns from the provided data with persistent columns. If a
persistent column has the same name and data type as a provided
column, it is considered to be the same column.

• Places the provided columns into the data set in the order specified in
the query or procedure.

• Adds the remaining columns - those defined only in the application - in
the order they are defined in the data set’s setColumns() method.

• Tries to move every column whose preferredOrdinal property is set to its
desired place. (If two columns have the same preferredOrdinal, this
won’t be possible.)

This means that:

• Columns that are defined in your application and that are not provided
by the query or procedure will appear after columns that are provided.

• Setting properties on some columns (whether provided or defined in
the application), but not others, will not change their order.

• You can change the position of any column by setting its
preferredOrdinal property. Columns whose preferredOrdinal is not set
retain their position relative to each other.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-1

C h a p t e r

8
Chapter8Saving changes back to your

data source
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

After data has been retrieved from a data source, and you make changes
to the data in the StorageDataSet, you will want to save the changes back to
your data source. All recorded changes to a DataSet can be saved back to a
data source such as a SQL server. This process is called resolving.
Sophisticated built-in reconciliation technology deals with potential edit
conflicts.

Between the time that the local subset of data is retrieved from a data
source, and the time that you attempt to save updates back to the data
source, various situations may arise that must be handled by the resolver
logic. For example, when you attempt to save your changes, you may find
that the same information on the server has been updated by another user.
Should the resolver save the new information regardless? Should it
display the updated server information and compare it with your
updates? Should it discard your changes? Depending on your application,
the need for resolution rules will vary.

The logic involved in resolving updates can be fairly complex. Errors can
occur while saving changes, such as violations of server integrity
constraints and resolution conflicts. A resolution conflict may occur, for
example, when deleting a row that has already been deleted, or updating
a row that has been updated by another user. JBuilder provides default
handling of these errors by positioning the DataSet to the offending row (if
it’s not deleted) and displaying the error encountered with a message
dialog.

When resolving changes back to the data source, these changes are
normally batched in groups called transactions. The DataExpress
mechanism uses a single transaction to save all inserts, updates, and

8-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S a v i n g c h a n g e s f r o m a Q u e r y D a t a S e t

deletions made to the DataSet back to the data source by default. To allow
you greater control, JBuilder allows you to change the default transaction
processing.

DataExpress also provides a generic resolver mechanism consisting of
base classes and interfaces. You can extend these to provide custom
resolver behavior when you need greater control over the resolution
phase. This generic mechanism also allows you to create resolvers for
non-JDBC data sources that typically do not support transaction
processing.

The following topics discuss the options for resolving data:

• “Saving changes from a QueryDataSet” on page 8-2 covers the basic
resolver handling provided by DataExpress and its default transaction
processing.

When a master-detail relationship has been established between two or
more data sets, special resolving procedures are required. For more
information, see “Saving changes in a master-detail relationship” on
page 9-10.

• “Saving changes back to your data source with a stored procedure” on
page 8-5 covers resolving changes made to a ProcedureDataSet back to its
data source.

• “Resolving data from multiple tables” on page 8-11 provides the
necessary settings for resolving changes when a query involves more
than one table.

• “Using DataSets with RMI (streamable data sets)” on page 8-14
provides a way to stream the data of a DataSet by creating a Java Object
(DataSetData) that contains data from a DataSet.

• “Customizing the default resolver logic” on page 8-16 describes how to
set custom resolution rules using the QueryResolver component and
resolver events.

• “Exporting data” on page 10-5 describes how to export data to a text
file.

Saving changes from a QueryDataSet
You can use different Resolver implementations to save changes back to
your data source. QueryDataSets use a QueryResolver to save changes by
default. The default resolver can be overridden by setting the
StorageDataSet.resolver property. When data is provided to the data set,
the StorageDataSet tracks the row status information (either deleted,
inserted, or updated) for all rows. When data is resolved back to a data
source like a SQL server, the row status information is used to determine
which rows to add to, delete from, or modify in the SQL table. When a

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-3

S a v i n g c h a n g e s f r o m a Q u e r y D a t a S e t

row has been successfully resolved, it obtains a new row status of resolved
(either RowStatus.UPDATE_RESOLVED,
RowStatus.DELETE_RESOLVED, or RowStatus.INSERT_RESOLVED). If
the StorageDataSet is resolved again, previously resolved rows will be
ignored, unless changes have been made subsequent to previous
resolving.

This topic explores the basic resolver functionality provided by the
DataExpress package. It extends the concepts explored in the “Tutorial:
Querying a database using the JBuilder UI” on page 5-16, to the resolving
phase where you save your changes back to the data source.

To step through this tutorial, use the files you created from the “Querying
a database” tutorial, or start with the completed sample files, located in
the /samples/DataExpress/QueryProvider directory.

The “Querying a database” tutorial explored the providing phase where
data is obtained from a data source. The tutorial instantiated a QueryDataSet
and associated UI components, and displayed the data retrieved from the
JDataStore employee sample. The Save button on the JdbNavToolBar can be
used to save data changes back to the employee file. In the next topic, we
add a button that also performs basic resolving code. When either the
custom button or the toolbar’s Save button is pressed, the changes made
to the data in the QueryDataSet are saved to the employee data file using the
QueryDataSet’s default QueryResolver.

Tutorial: Adding a button to save changes from a
QueryDataSet

The source code for the completed tutorial is located in the
/samples/DataExpress/QueryResolver directory of your JBuilder
installation. The running application looks like this:

8-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S a v i n g c h a n g e s f r o m a Q u e r y D a t a S e t

To create this application,

1 Open the project file you created for the “Querying a database” tutorial
by choosing File|Open, and then browsing to that project. If you did
not complete the tutorial, you can access the completed project files
from the /samples/DataExpress/QueryProvider directory of your
JBuilder installation.

Note You should make backup copies of these files before modifying them
since other tutorials in this book use the “Querying a database” files as
a starting point.

2 Select the Frame file in the content pane.

3 Add a JButton component from the Swing tab of the component palette.
Set the button’s text property to Save Changes. (See the finished
application at the beginning of this tutorial for general placement of the
controls in the UI.)

4 Make sure the JButton is still selected, then click the Events tab of the
Inspector. Select, then double-click the actionPerformed() method. This
changes the focus of the AppBrowser from the UI designer to the
Source pane and displays the stub for the actionPerformed() method.

Add the following code to the actionPerformed() method:

 try {
 database1.saveChanges(queryDataSet1);
 System.out.println("Save changes succeeded");
 }
 catch (Exception ex) {
// displays the exception on the JdbStatusLabel if the
// application includes one,
// or displays an error dialog if there isn't
 DBExceptionHandler.handleException(ex); }

If you’ve used different names for the instances of the objects, for
example, database1, replace them accordingly.

5 Run the application by selecting Run|Run Project. The application
compiles and displays in a separate window. Data is displayed in a
table, with a Save Changes button, the toolbar, and a status label that
reports the current row position and row count.

If errors are found, an error pane appears that indicates the line(s)
where errors are found. The code of the custom button is the most
likely source of errors, so check that the code above is correctly entered.
Make corrections to this and other areas as necessary to run the
application.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-5

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e w i t h a s t o r e d p r o c e d u r e

When you run the application, notice the following behavior:

• Use the keyboard, mouse, or toolbar to scroll through the data
displayed in the table. The status label updates as you navigate.

• You can resize the window to display more fields, or scroll using the
horizontal scroll bar.

Make changes to the data displayed in the table by inserting, deleting, and
updating data. You can save the changes back to the server choosing
either,

• the Save Changes button you created, or

• the Save button of the JdbNavToolBar

Note Because of data constraints on the employee table, the save operation may
not succeed depending on the data you change. Since other edits may
return errors, make changes only to the FIRST_NAME and LAST_NAME
values in existing rows until you become more familiar with the
constraints on this table.

See also
“Customizing the default resolver logic” on page 8-16

Saving changes back to your data source with a stored procedure
You can use different Resolver implementations to save changes back to
your data source. QueryDataSets use a QueryResolver to save changes by
default. The default resolver can be overridden by setting the
StorageDataSet.resolver property.

This topic explores the basic resolver functionality provided by the
DataExpress package for ProcedureDataSet components. It extends the
concepts explored in “Using stored procedures” on page 6-1 by exploring
the different methods for saving data changes back to a data source.

The topic “Tutorial: Retrieving data using stored procedures” on page 6-3
explores how to run a stored procedure in order to retrieve data. The
tutorial creates a table on the server, and then creates insert, update, and
delete procedures that will provide information on how to resolve
changes back to the source. Using JBuilder’s IDE, the tutorial instantiates a
ProcedureDataSet component and associated UI components, and displays
the data returned from the JDataStore in a table. The Save button on the
JdbNavToolBar can be used to save data changes back to the employee file
when certain properties have been set.

8-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e w i t h a s t o r e d p r o c e d u r e

In this topic, the retrieving tutorial is expanded by adding basic resolving
capability. With a ProcedureDataSet component, this can be accomplished
in two ways. The following sections discuss each option in more detail.

• A button that activates basic resolving code or a JdbNavToolBar whose
Save button also performs a basic query resolve function. See “Tutorial:
Saving changes using a QueryResolver” on page 8-6.

• A ProcedureResolver that requires special coding of the stored procedure
on the database on which the data should be resolved. An example of
this is available in “Tutorial: Saving changes with a
ProcedureResolver” on page 8-9.

Tutorial: Saving changes using a QueryResolver

If the resolver property of a ProcedureDataSet is not set, the default resolver
is a QueryResolver that will generate INSERT, UPDATE, and DELETE
queries to save the changes. The QueryResolver requires tableName and rowID
properties to be set. This tutorial shows how.

The finished example for this tutorial may be available as a completed
project in the /samples/DataExpress/SimpleStoredProcedure/ directory
of your JBuilder installation. Other sample applications referencing stored
procedures on a variety of servers are available in the
/samples/DataExpress/ServerSpecificProcedures/ directory.

To complete the application and save changes back to the COUNTRY
table,

1 Select File|Close if you have any open projects. Select File|Open. Open
the project file you created for “Tutorial: Retrieving data using stored
procedures” on page 6-3. We will add resolving capability to the
existing project.

At this point in the tutorial, you can run the application and view and
navigate data. In order to successfully insert, delete, or update records,
however, you need to provide more information to the QueryResolver, as
follows. The QueryResolver is invoked by default unless a
ProcedureResolver is defined (see “Tutorial: Saving changes with a
ProcedureResolver” on page 8-9). Then proceed with the following
steps:

2 Select Frame1.java in the project pane. Select the Design tab to activate
the UI designer.

3 Select procedureDataSet1 in the component tree.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-7

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e w i t h a s t o r e d p r o c e d u r e

4 Set the tableName property of procedureDataSet1 to “COUNTRY” in the
Inspector.

5 Verify that the resolvable property of the procedureDataSet1 is set to to
True.

6 Click the expand icon to the left of procedureDataSet1 in the project pane
to expose the columns of the data set.

7 Select the key column, which is named COUNTRY.

8 Set the rowID property of the COUNTRY column to True.

9 Select Run|Run Project to run the application.

The application compiles and displays in a separate window. Data is
displayed in a table with the toolbar and a status label that reports the
current row position and row count. You can now insert, update, or delete
records and save the changes back to your database.

When you run the application, notice the following behavior:

• Use the keyboard, mouse, or toolbar to scroll through the data
displayed in the table. The status label updates as you navigate.

• You can resize the window to display more fields, or scroll using the
horizontal scroll bar.

In the above example, you could add a JButton coded to handle saving
changes in place of the JdbNavToolBar. For more detailed information about
how to do this, see “Tutorial: Adding a button to save changes from a
QueryDataSet” on page 8-3. With the button control selected in the
component tree, select the Event tab of the Inspector, select the
actionPerformed() method, double-click its value field, and add the
following code in the Source window:

 try {
 database1.saveChanges(procedureDataSet1);
 System.out.println("Save changes succeeded");
 }
 catch (Exception ex) {
// displays the exception on the JdbStatusLabel if
// the application includes one,
// or displays an error dialog if there isn't
 DBExceptionHandler.handleException(ex); }

If you’ve used different names for the instances of the objects, for
example, database1, replace them accordingly.

8-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C o d i n g s t o r e d p r o c e d u r e s t o h a n d l e d a t a r e s o l u t i o n

Coding stored procedures to handle data resolution
To use a ProcedureResolver, you need to implement three stored
procedures on the database, and specify them as properties of the
ProcedureResolver. The three procedures are:

• insertProcedure is invoked for every row to be inserted in the DataSet.
The available parameters for an invocation of an insertProcedure are:

• the inserted row as it appears in the DataSet.
• the optional ParameterRow specified in the ProcedureDescriptor.

The stored procedure should be designed to insert a record in the
appropriate table(s) given the data of that row. The ParameterRow may be
used for output summaries or for optional input parameters.

• updateProcedure is invoked for every row changed in the DataSet. The
available parameters for an invocation of an updateProcedure are:

• the modified row as it appears in the DataSet.
• the original row as it was when data was provided to the DataSet.
• the optional ParameterRow specified in the ProcedureDescriptor.

The stored procedure should be designed to update a record in the
appropriate table(s) given the original data and the modified data.
Since the original row and the modified row have the same column
names, the named parameter syntax has been expanded with a way to
indicate the designated data row. The named parameter
“:ORIGINAL.CUST_ID” thus indicates the CUST_ID of the original
data row, where “:CURRENT.CUST_ID” indicates the CUST_ID of the
modified data row. Similarly, a “:parameter.CUST_ID” parameter
would indicate the CUST_ID field in a ParameterRow.

• deleteProcedure is invoked for every row deleted from the DataSet. The
available parameters for an invocation of a deleteProcedure are:

• the original row as it was when data was provided into the DataSet.
• the optional ParameterRow specified in the ProcedureDescriptor.

The stored procedure should be designed to delete a record in the
appropriate table(s) given the original data of that row.

A example of code that uses this method of resolving data to a database
follows in “Tutorial: Saving changes with a ProcedureResolver” on
page 8-9. In the case of InterBase, also see “Example: Using InterBase
stored procedures with return parameters” on page 8-11.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-9

C o d i n g s t o r e d p r o c e d u r e s t o h a n d l e d a t a r e s o l u t i o n

Tutorial: Saving changes with a ProcedureResolver

The following tutorial shows how to save changes to your database using
JBuilder’s UI designer, a ProcedureDataSet component, and a
ProcedureResolver. Some sample applications referencing stored
procedures on a variety of servers are available in the
/samples/DataExpress/ServerSpecificProcedures directory.

To complete the application and save changes back to the COUNTRY
table with custom defined insert, update, and delete procedures, first,
open the project file you created for “Tutorial: Retrieving data using
stored procedures” on page 6-3. Resolving capability will be added to the
existing project.

The current project contains a JdbNavToolBar component. In addition to
enabling you to move around the table, a toolbar provides a Save Changes
button. At this point, this button will use a QueryResolver. Once we
provide a custom resolver via a ProcedureResolver, the Save Changes
button will call the insert, update, and delete procedures specified there
instead

At this point in the application, you can run the application and have the
ability to view and navigate data. In order to successfully insert, delete, or
update records, however, you need to provide the following information
on how to handle these processes. With the project open,

1 Select the Frame file in the content pane, then select the Design tab to
activate the UI designer.

2 Select a ProcedureResolver component from the DataExpress tab of the
component palette on the content pane. Click in the content pane to add
the component to the application.

3 Set the database property of the ProcedureResolver to the instantiated
database, database1 in the Inspector.

4 Set the deleteProcedure property to DELETE_COUNTRY as follows:

1 Select procedureResolver1 in the component tree and click its
deleteProcedure property in the Inspector.

2 Double-click in the deleteProcedure property value field to bring up
the DeleteProcedure dialog.

3 Set the Database property to database1.

4 Click Browse Procedures, then double-click the procedure named
DELETE_COUNTRY.

The following statement is written in the Stored Procedure Escape or
SQL Statement field:

execute procedure DELETE_COUNTRY :OLD_COUNTRY

8-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C o d i n g s t o r e d p r o c e d u r e s t o h a n d l e d a t a r e s o l u t i o n

5 Edit this statement to be:

execute procedure DELETE_COUNTRY :COUNTRY

See the text of the procedure in “Creating tables and procedures for
the tutorial manually” on page 6-8 or by using the Database Pilot
(Tools|Database Pilot).

Note Don’t click Test Procedure because this procedure does not return a
result.

5 Set the insertProcedure property to INSERT_COUNTRY as follows:

1 Select, then double-click the insertProcedure property of the
ProcedureResolver to open the insertProcedure dialog.

2 Set the Database field to database1.

3 Click Browse Procedures, then double-click the procedure named
INSERT_COUNTRY.

4 Edit the generated code to read:

execute procedure INSERT_COUNTRY :COUNTRY, :CURRENCY

Note Don’t click Test Procedure because this procedure does not return a
result.

6 Set the updateProcedure property to UPDATE_COUNTRY as follows:

1 Select, then double-click the updateProcedure property of the
ProcedureResolver to open the updateProcedure dialog.

2 Set the Database property to database1.

3 Click Browse Procedures, then double-click the procedure named
UPDATE_COUNTRY.

4 Edit the generated code to read:

execute procedure UPDATE_COUNTRY :ORIGINAL.COUNTRY, :CURRENT.COUNTRY,
 :CURRENT.CURRENCY

Note Don’t click Test Procedure because this procedure does not return a
result.

7 Select procedureDataSet1 in the project pane. Set the resolver property to
procedureResolver1.

8 Select procedureDataSet1. Set its metaDataUpdate property to None.

9 Select Run|Run Project to run the application.

When you run the application, you can browse, edit, insert, and delete
data in the table. Save any change you make with the Save Changes
button on the toolbar. Note that in this particular example, you cannot
delete an existing value in the COUNTRY column because referential
integrity has been established. To test the DELETE procedure, add a new
value to the COUNTRY column and then delete it.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-11

R e s o l v i n g d a t a f r o m m u l t i p l e t a b l e s

Example: Using InterBase stored procedures with
return parameters

An InterBase stored procedure that returns values is called differently by
different drivers. The list below shows the syntax for different drivers for
the following function :

CREATE PROCEDURE fct (x SMALLINT)
RETURNS (y SMALLINT)
AS
BEGIN
 y=2*x;
END

Calling fct procedure from different drivers:

• Visigenic and InterClient version 1.3 and earlier

execute procedure fct ?

If the procedure is called through a straight JDBC driver, the output is
captured in a result set with one row. JBuilder allows the following
syntax to handle output values:

execute procedure fct ? returning_values ?

JBuilder will then capture the result set and set the value into the
parameter supplied for the second parameter marker.

• InterClient version 1.4 and later:

{call fct(?,?)}

where the parameter markers should be placed at the end of the input
parameters.

Resolving data from multiple tables
You can specify a query on multiple tables in a QueryDataSet and JBuilder
can resolve changes to such a DataSet. SQLResolver is able to resolve SQL
queries that have more than one table reference. The metadata discovery
will detect which table each column belongs to, and suggest a resolution
order between the tables. The properties set by the metadata discovery
are:

• Column - columnName
• Column - schemaName
• Column - serverColumnName
• StorageDataSet - tableName
• StorageDataSet - resolveOrder

The tableName property of the StorageDataSet is not set. The tableName is
identified on a per column basis.

8-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

R e s o l v i n g d a t a f r o m m u l t i p l e t a b l e s

The property resolveOrder is a String array that specifies the resolution
order for multi-table resolution. INSERT and UPDATE queries use the
order of this array, DELETE queries use the reverse order. If a table is
removed from the list, the columns from that table will not be resolved.

Considerations for the type of linkage between tables
in the query

A multi-table SQL query usually defines a link between tables in the
WHERE clause of the query. Depending on the nature of the link and the
structure of the tables, this link may be of four distinct types (given the
primary table T1 and a linked table T2):

• 1:1

There is exactly one record in T2 that corresponds to a record in T1 and
vice versa. A relational database may have this layout for certain tables
for either clarity or a limitation of the number of columns per table.

• 1:M

There can be several records in T2 that correspond to a record in T1, but
only one record in T1 corresponds to a record in T2. Example: each
customer can have several orders.

• M:1

There is exactly one record in T2 that correspond to a record in T1, but
several records in T1 may correspond to a record in T2. Example: each
order may have a product id, which is associated with a product name
in the products table. This is an example of a lookup expressed directly
in SQL.

• M:M

The most general case.

JBuilder takes a simplified approach to resolving multiple, linked tables:
JBuilder only resolves linkages of type 1:1. However, because it is difficult
to detect which type of linkage a given SQL query describes, JBuilder
assumes that any multi-table query is of type 1:1. If the multiple, linked
tables are not of type 1:1, you handle resolving of other types as follows:

• 1:M

It is generally uninteresting to replicate the master fields for each detail
record in the query. Instead, create a separate detail dataset, which
allows correct resolution of the changes.

• M:1

These should generally be handled using the lookup mechanism.
However if the lookup is for display only (no editing of these fields), it

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-13

R e s o l v i n g d a t a f r o m m u l t i p l e t a b l e s

could be handled as a multi-table query. For at least one column, mark
the rowId property from the table with the lookup as not resolvable.

• M:M

This table relationship arises very infrequently, and often it appears as
a result of a specification error.

Table and column references (aliases) in a query string

A query string may include table references and column references or
aliases.

• Table aliases are usually not used in single table queries, but are often
used in multiple table queries to simplify the query string or to
differentiate tables with the same name, owned by different users.

SELECT A.a1, A.a2, B.a3 FROM Table_Called_A AS A, Table_Called_B AS B

• Column references are usually used to give a calculated column a
name, but may also be used to differentiate columns with the same
name originating from different tables.

SELECT T1.NO AS NUMBER, T2.NO AS NR FROM T1, T2

• If a column alias is present in the query string, it becomes the columnName
of the Column in JBuilder. The physical name inside the original table is
assigned to the serverColumnName property. The QueryResolver uses
serverColumnName when generating resolution queries.

• If a table alias is present in the query string, it is used to identify the
tableName of a Column. The alias itself is not exposed through the JBuilder
API.

Controlling the setting of the column properties
The tableName, schemaName, and serverColumnName properties are set by the
QueryProvider for a QueryDataSet unless the metaDataUpdate property does not
include metaDataUpdate.TABLENAME.

What if a table is not updateable?
If there is no rowId in a certain table of a query, all the updates to this table
are not saved with the saveChanges() call.

Note The ability to update depends on other things, which are described in
more detail in “Querying a database” on page 5-14.

8-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g D a t a S e t s w i t h R M I (s t r e a m a b l e d a t a s e t s)

How can the user specify that a table should never
be updated?
For a multi-table query, one of the tables can be updateable when the
other is not. The StorageDataSet property resolveOrder is a String array that
specifies the resolution order for multi-table resolution. INSERT and
UPDATE queries use the order of this array, DELETE queries use the
reverse order. If a table is removed from the list, the columns from that
table will not be resolved.

For a single table, set the metaDataUpdate property to NONE, and do not set
any of the resolving properties (rowID, tableName, etc.).

Using DataSets with RMI (streamable data sets)
Streamable data sets enable you to create a Java object (DataSetData) that
contains all the data of a DataSet. Similarly, the DataSetData object can be
used to provide a DataSet with column information and data.

The DataSetData object implements the java.io.Serializable interface and
may subsequently be serialized using writeObject in
java.io.ObjectOutputStream and read using readObject in
java.io.ObjectInputStream. This method turns the data into a byte array and
passes it through sockets or some other transport medium. Alternatively, the
object can be passed via Java RMI, which will do the serialization directly.

In addition to saving a complete set of data in the DataSet, you may save
just the changes to the data set. This functionality can implement a
middle-tier server that communicates with a DBMS and a thin client
which is capable of editing a DataSet.

Example: Using streamable data sets

One example of when you would use a streamable DataSet is in a 3-tier
system with a Java server application that responds to client requests for
data from certain data sources. The server may use JBuilder QueryDataSets
or ProcedureDataSets to provide the data to the server machine. The data
can be extracted using DataSetData.extractDataSet and sent over a wire to
the client. On the client side, the data can be loaded into a TableDataSet and
edited with JBuilder DataSet controls or with calls to the DataSet Java API.
The server application may remove all the data in its DataSet such that it
will be ready to serve other client applications.

When the user on the client application wants to save the changes, the
data may be extracted with DataSetData.extractDataSetChanges and sent to
the server. Before the server loads these changes, it should get the physical
column types from the DBMS using the metadata of the DataSet. Next, the

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-15

U s i n g D a t a S e t s w i t h R M I (s t r e a m a b l e d a t a s e t s)

DataSet is loaded with the changes and the usual resolvers in JBuilder are
applied to resolve the data back to the DBMS.

If resolution errors occur, they might not be detected by UI actions when
the resolution is happening on a remote server machine. The resolver
could handle the errors by creating an errors DataSet. Each error message
should be tagged with the INTERNALROW value of the row for which the error
occurred. DataSetData can transport these errors to the client application. If
the DataSet is still around, the client application can easily link the errors to
the DataSet and display the error text for each row.

Using streamable DataSet methods

The static methods extractDataSet and extractDataSetChanges will populate
the DataSetData with nontransient private data members, that specify

1 Metadata information consisting of

• columnCount
• rowCount
• columnNames
• dataTypes
• rowId, hidden, internalRow (column properties)

The properties are currently stored as the 3 high bits of each data type.
Each data type is a byte. The columnCount is stored implicitly as the
length of the columnNames array.

2 Status bits for each row. A short is stored for each row.

3 Null bits for each data element. 2 bits are stored for each data element.
The possible values used are:

• 0) Normal data
• 1) Assigned Null
• 2) Unassigned Null
• 3) Unchanged Null

The last value is used only for extractDataSetChanges. Values that are
unchanged in the UPDATED version are stored as null, saving space
for large binaries, etc.

4 The data itself, organized in an array of column data. If a data column is
of type Variant.INTEGER, an int array will be used for the values of that
column.

5 For extractDataSetChanges, a special column, INTERNALROW, is added to the
data section. This data column contains long values that designate the
internalRow of the DataSet the data was extracted from. This data column
should be used for error reporting in case the changes could not be
applied to the target DBMS.

8-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

The loadDataSet method will load the data into a DataSet. Any columns that
do not already exist in the DataSet will be added. Note that physical types
and properties such as sqlType, precision, and scale are not contained in
the DataSetData object. These properties must be found on the DBMS
directly. However these properties are not necessary for editing purposes.
The special column INTERNALROW shows up as any other column in the data
set.

Customizing the default resolver logic
JBuilder makes it easy to write a custom resolver for your data when you
are accessing data from a custom data source, such as EJB, application
servers, SAP, BAAN, IMS, OS/390, CICS, VSAM, DB2, etc.

The retrieval and update of data from a data source, such as an Oracle or
Sybase server, is isolated to two key interfaces: providers and resolvers.
Providers retrieve data from a data source into a StorageDataSet. Resolvers
save changes back to a data source. By cleanly isolating the retrieval and
updating of data to two interfaces, it is easy to create new
provider/resolver components for new data sources. JBuilder currently
provides implementations for standard JDBC drivers that provide access
to popular databases such as support for Oracle, Sybase, Informix,
InterBase, DB2, MS SQL Server, Paradox, dBASE, FoxPro, Access, and
other popular databases. These include:

• OracleProcedureProvider
• ProcedureProvider
• ProcedureResolver
• QueryProvider
• QueryResolver

An example project with a custom provider and resolver is located in the
JBuilder /samples/DataExpress/CustomProviderResolver directory of
your JBuilder installation. The sample file TestApp.java is an application
with a frame that contains a JdbTable and a JdbNavToolBar. Both visual
components are connected to a TableDataSet component where data is
provided from a custom Provider (defined in the file ProviderBean.java),
and data is saved with a custom Resolver (defined in the file
ResolverBean.java). This sample application reads from and saves
changes to the text file data.txt, a simple non-delimited text file. The
structure of data.txt is described in the interface file DataLayout.java.

A tutorial describing how to write a custom ProcedureResolver is available
in the “Tutorial: Saving changes with a ProcedureResolver” on page 8-9.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-17

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

Understanding default resolving

If you have not specifically instantiated a QueryResolver component when
resolving data changes back to the data source, the built-in resolver logic
creates a default QueryResolver component for you. This topic explores
using the QueryResolver to customize the resolution process.

The QueryResolver is a DataExpress package component which implements
the SQLResolver interface. It is this SQLResolver interface which is used by the
ResolutionManager during the process of resolving changes back to the
database. As its name implies, the ResolutionManager class manages the
resolving phase.

Each StorageDataSet has a resolver property. If this property has not been
set when you call the Database.saveChanges() method, it creates a default
QueryResolver and attempts to save the changes for a particular DataSet.

Adding a QueryResolver component
To add a QueryResolver component to your application using the JBuilder
visual design tools:

1 Open an existing project that you want to add custom resolver logic to.
The project should include a Database object, and a QueryDataSet object.
See “Querying a database” on page 5-14 for how to do this.

2 Select the Frame file in the content pane. Click the Design tab to display
the UI designer.

3 Click the QueryResolver component from the Data Express tab of the
component palette.

4 Click (anywhere) in the UI designer or the component tree to add it to
your application. The UI designer generates source code that creates a
default QueryResolver object.

5 Connect the QueryResolver to the appropriate DataSet. To do this, use the
Inspector to set the resolver property of the StorageDataSet, for example
queryDataSet1, to the appropriate QueryResolver, which is, by default,
queryResolver1.

You can connect the same QueryResolver to more than one DataSet if the
different DataSet objects share the same event handling. If each DataSet
needs custom event handling, create a separate QueryResolver for each
StorageDataSet.

Intercepting resolver events
You control the resolution process by intercepting Resolver events. When
the QueryResolver object is selected in the content pane, the Events tab of

8-18 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

the Inspector displays its events. The events that you can control (defined
in the ResolverListener interface) can be grouped into three categories of:

• Notification of an action to be performed. Any errors will be treated as
normal exceptions, not as error events.

• deletingRow()
• insertingRow()
• updatingRow()

• Notification that an action has been performed:

• deletedRow()
• insertedRow()
• updatedRow()

• Conditional errors that have occurred. These are internal errors, not
server errors.

• deleteError()
• insertError()
• updateError()

When the resolution manager is about to perform a delete, insert, or
update action, the corresponding event notification from the first set of
events (deletingRow, insertingRow, and updatingRow) is generated. One of the
parameters passed with the notification to these events is a
ResolverResponse object. It is the responsibility of the event handler (also
referred to as the event listener) to determine whether or not the action is
appropriate and to return one of the following (ResolverResponse)
responses:

• resolve() instructs the resolution manager to continue resolving this
row

• skip() instructs the resolution manager to skip this row and continue
with the rest

• abort() instructs the resolution manager to stop resolving

If the event’s response is resolve() (the default response), then one of the
second set of events (deletedRow, insertedRow or updatedRow) is generated as
appropriate. No response is expected from these events. They exist only to
communicate to the application what action has been performed.

If the event’s response is skip(), the current row is not resolved and the
resolving process continues with the next row of data.

If the event terminates the resolution process, the inserting method gets
called, which in turn calls response.abort(). No error event is generated
because error events are wired to respond to internal errors. However, a
generic ResolutionException is thrown to cancel the resolution process.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-19

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

If an error occurs during the resolution processing, for example, the server
did not allow a row to be deleted, then the appropriate error event
(deleteError, insertError, or updateError) is generated. These events are
passed the following:

• the original DataSet involved in the resolving

• a temporary DataSet that has been filtered to show only the affected
rows

• the Exception which has occurred

• an ErrorResponse object.

It is the responsibility of the error event handler to:

• examine the Exception

• determine how to proceed

• to communicate this decision back to the resolution manager. This
decision is communicated using one of the following ErrorResponse
responses:

• abort() instructs the resolution manager to cease all resolving

• retry() instructs the resolution manager to try the last operation
again

• ignore() instructs the resolution manager to ignore the error and to
proceed

If the event handler throws a DataSetException, it is treated as a
ResolverResponse.abort(). In addition, it triggers the error event described
above, passing along the user’s Exception.

Using resolver events
For an example of resolver events, see ResolverEvents.jpr and associated
files in the /samples/DataExpress/ResolverEvents directory of your
JBuilder installation. In the ResolverEvents application,

• A table is bound to the Customer table in the JDataStore sample
database.

• The Save Changes button creates a custom QueryResolver object which
takes control of the resolution process.

In the running application, you’ll notice the following behavior:

• Row deletions are not allowed. Any attempt at deleting a row of data is
unconditionally prevented. This demonstrates usage of the deletingRow
event.

• Row insertions are permitted only if the customer is from the United
States. If the current customer is not from the U.S., the process is

8-20 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

aborted. This example demonstrates usage of the insertingRow event
and a ResolverResponse of abort().

• Row updates are done by adding the old and new values of a
customer’s name to a ListControl. This demonstrates how to access both
the new information as well as the prior information during the
resolution process.

Writing a custom data resolver

This topic discusses custom data resolvers, and how they can be used as
resolvers for a TableDataSet and any DataSet derived from TableDataSet. The
main method to implement is resolveData(). This method collects the
changes to a StorageDataSet and resolves these changes back to the source.

In order to resolve data changes back to a source,

1 Make sure that the StorageDataSet is blocked for changes in the provider
during the resolution process. This is done by calling the methods:

• ProviderHelp.startResolution(dataSet, true);
• ProviderHelp.endResolution(dataSet);

Important Place all of the following items between these two method calls.

2 Locate changes in the data by creating a DataSetView for each of the
inserted, deleted, and updated rows. That is accomplished using the
following method calls:

• StorageDataSet.getInsertedRows(DataSetView);
• StorageDataSet.getDeletedRows(DataSetView);
• StorageDataSet.getUpdatedRows(DataSetView);

It is important to note that

• The inserted rows may contain deleted rows (which shouldn’t be
resolved).

• The deleted rows may contain inserted rows (which shouldn’t be
resolved).

• The updated rows may contain deleted and inserted rows (which
shouldn’t be handled as updates).

3 Close each of the DataSetViews after the data has been resolved, or if an
exception occurs during resolution. If the DataSetViews are not closed,
the StorageDataSet retains references to it, and such a view will never be
garbage collected.

S a v i n g c h a n g e s b a c k t o y o u r d a t a s o u r c e 8-21

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

Handling resolver errors
Errors can be handled in numerous ways, however the DataSet must be
told to change the status of the changed rows. To do this,

1 Change each row so that it is marked RowStatus.PENDING_RESOLVED:. The
code to mark the current row this way is:

DataSet.markPendingStatus(true);

Call this method for each of the inserted, deleted, and updated rows
that is being resolved.

2 Call one or more of the following methods to reset the
RowStatus.PENDING_RESOLVED bit. Which methods are called
depends on the error handling approach

• markPendingStatus(false);

The markPendingStatus method resets the current row.

• resetPendingStatus(boolean resolved);

This resetPendingStatus method resets all the rows in the DataSet.

• resetPendingStatus(long internalRow, boolean resolved);

This resetPendingStatus method resets the row with the specified
internalRow id.

3 Reset the resolved parameter, using of one of the resetPendingStatus
methods, to true for rows whose changes were actually made to the
data source.

When the PENDING_RESOLVED bit is reset, the rows retain the status
of recorded changes. The rows must be reset and resolved so that

• The INSERTED & UPDATED rows are changed to LOADED status.

• The DELETED rows are removed from the DataSet.

The row changes that were not made will clear the
PENDING_RESOLVED bit, however, the changes are still recorded in
the DataSet.

Some resolvers will choose to abandon all changes if there are any errors.
In fact, that is the default behavior of QueryDataSet. Other resolvers may
choose to commit certain changes, and retain the failed changes for error
messages.

Resolving master-detail relationships
Master-detail resolution presents some issues to be considered. If the
source of the data has referential integrity rules, the DataSets may have to
be resolved in a certain order. When using JDBC, JBuilder provides the
SQLResolutionManager class. This class ensures the master data set resolves
its inserted rows before enabling the detail data set to resolve its inserted

8-22 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e d e f a u l t r e s o l v e r l o g i c

row, and also ensures that detail data sets resolve their deleted rows
before the deleted rows of the master data set are resolved. For more
information on resolving master-detail relationships, see “Saving changes
in a master-detail relationship” on page 9-10.

E s t a b l i s h i n g a m a s t e r - d e t a i l r e l a t i o n s h i p 9-1

C h a p t e r

9
Chapter9Establishing a master-detail

relationship
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

Databases that are efficiently designed include multiple tables. The goal of
table design is to store all the information you need in an accessible,
efficient manner. Therefore, you want to break down a database into
tables that identify the separate entities (such as persons, places, and
things) and activities (such as events, transactions, and other occurrences)
important to your application. To better define your tables, you need to
identify and understand how they relate to each other. Creating several
small tables and linking them together reduces the amount of redundant
data, which in turn reduces potential errors and makes updating
information easier.

In JBuilder, you can join, or link, two or more data sets that have at least
one common field using a MasterLinkDescriptor. A master-detail
relationship is usually a one-to-many type relationship among data sets.
For example, say you have a data set of customers and a data set of orders
placed by these customers, where customer number is a common field in
each. You can create a master-detail relationship that will enable you to
navigate through the customer data set and have the detail data set
display only the records for orders placed by the customer who is exposed
in the current record.

You can link one master data set to several detail data sets, linking on the
same field or on different fields. You can also create a master-detail
relationship that cascades to a one-to-many-to-many type relationship.
Many-to-one or one-to-one relationships can be handled within a
master-detail context, but these kinds of relationships would be better
handled through the use of lookup fields, in order to view all of the data
as part of one data set. For information on saving changes to data from
multiple data sets, see “Resolving data from multiple tables” on page 8-11.

9-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

D e f i n i n g a m a s t e r - d e t a i l r e l a t i o n s h i p

The master and detail data sets do not have to be of the same data set type.
For example, you could use a QueryDataSet as the master data set and a
TableDataSet as the detail data set. QueryDataSet, TableDataSet, and
DataSetView can all be used as either master or detail data sets.

These are the topics covered:

• Defining a master-detail relationship
• Fetching details
• Editing data in master-detail data sets
• Steps to creating a master-detail relationship
• Tutorial: Creating a master-detail relationship
• Saving changes in a master-detail relationship

Defining a master-detail relationship
When defining a master-detail relationship, you must link columns of the
same data type. For example, if the data in the master data set is of type
INT, the data in the detail data set must be of type INT as well. If the data
in the detail data set were of type LONG, either no matches or incorrect
matches would be found. The names of the columns may be different. You
are not restricted to linking on columns that have indexes on the server.

You can sort information in the master data set with no restrictions.
Linking between a master and a detail data set uses the same mechanism
as maintaining sorted views, a maintained index. This means that a detail
data set will always sort with the detail linking columns as the left-most
sort columns. Additional sorting criteria must be compatible with the
detail linking columns. To be compatible, the sort descriptor cannot
include any detail linking columns or, if it does include detail linking
columns, they must be specified in the same order in both the detail
linking columns and the sort descriptor. If any detail linking columns are
included in the sort descriptor, all of them should be specified.

You can filter the data in the master data set, the detail data set, or in both.
A master-detail relationship alone is very much like a filter on the detail
data set; however, a filter can be used in addition to the master-detail
relationship on either data set.

Instead of using a MasterLinkDescriptor, you may use a SQL JOIN
statement to create a master-detail relationship. A SQL JOIN is a relational
operator that produces a single table from two tables, based on a
comparison of particular column values (join columns) in each of the data
sets. The result is a single data set containing rows formed by the
concatenation of the rows in the two data sets wherever the values of the
join columns compare. To update JOIN queries with JBuilder, see
“Resolving data from multiple tables” on page 8-11.

E s t a b l i s h i n g a m a s t e r - d e t a i l r e l a t i o n s h i p 9-3

F e t c h i n g d e t a i l s

Fetching details
In a master-detail relationship, the values in the master fields determine
which detail records will display. The records for the detail data set can be
fetched all at once or can be fetched for a particular master when needed
(when the master record is visited).

Be careful when using the cascadeUpdates and cascadeDelete options for
master-detail relationships. When using these options, one row of a detail
data set may be updated or deleted, but the others may not be. For
example, an event handler for the editListener's deleting() event may
allow deletion of some detail rows and block deletion of others. In the case
of cascaded updates, you may end up with orphan details if some rows in
a detail set can be updated and others cannot. For more information on the
cascadeUpdates and cascadeDelete options, see the MasterLinkDescriptor
topic in the DataExpress Component Library Reference.

Fetching all details at once

When the fetchAsNeeded parameter is false (or Delay Fetch Of Detail
Records Until Needed is unchecked in the masterLinkDescriptor dialog
box), all of the detail data is fetched at once. Use this setting when your
detail data set is fairly small. You are viewing a snapshot of your data
when you use this setting, which will give you the most consistent view of
your data. When the refresh() method is called, all of the detail sets are
refreshed at once.

For example, initially the data set is populated with all of the detail data
set data. When the fetchAsNeeded option is set to false, you could
instantiate a DataSetView component, view the detail data set through it,
and see that all of the records for detail data set are present, but are being
filtered from view based on the linking information being provided from
the master data set.

Fetching selected detail records on demand

When the fetchAsNeeded parameter is true (or Delay Fetch Of Detail
Records Until Needed is checked in the masterLinkDescriptor dialog box),
the detail records are fetched on demand and stored in the detail data set.
This type of master-detail relationship is really a parameterized query
where the values in the master fields determine which detail records will
display. You are most likely to use this option if your remote database
table is very large, in order to improve performance (not all of the data set
will reside in memory - it will be loaded as needed). You would also use
this option if you are not interested in most of the detail data. The data
that you view will be fresher and more current, but not be as consistent a

9-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E d i t i n g d a t a i n m a s t e r - d e t a i l d a t a s e t s

snapshot of your data as when the fetchAsNeeded parameter is false=. You
will fetch one set of detail records at one point in time, it will be cached in
memory, then you will fetch another set of detail records and it will be
cached in memory. In the meantime, the first set of detail records may
have changed in the remote database table, but you will not see the
change until you refresh the details. When the refresh() method is called,
only the current detail sets are refreshed.

For example, initially, the detail data set is empty. When you access a
master record, for example Jones, all of the detail records for Jones are
fetched. When you access another master record, say Cohen, all of the
detail records for Cohen are fetched and appended to the detail data set. If
you instantiate a DataSetView component to view the detail data set, all
records for both Jones and Cohen are in the detail data set, but not any
records for any other name.

When the fetchAsNeeded property is true, there should be a WHERE clause
that defines the relationship of the detail columns in the current
QueryDataSet to a parameter that represents the value of a column in the
master data set. If the parameterized query has named parameter
markers, the name must match a name in the master data set. If “?” JDBC
parameter markers are used, the detail link columns are bound to the
parameter markers from left to right as defined in the masterLink property.
The binding of the parameter values is implicit when the master navigates
to a row for the first time. The query will be re-executed to fetch each new
detail group. If there is no WHERE clause, JBuilder throws
DataSetException.NO_WHERE_CLAUSE. When fetching is handled this way, if no
explicit transactions are active, the detail groups will be fetched in
separate transactions. For more information on master-detail relationships
within parameterized queries, see “Parameterized queries in master-detail
relationships” on page 5-35.

When the the master data set has two or more detail data sets associated
with it, and the fetchAsNeeded property of each is true, the details
remember what detail groups they have attempted to fetch via a query or
stored procedure that is parameterized on the active master row linking
columns. This memory can be cleared by calling the StorageDataSet.empty()
method. There is no memory for masterLink properties that do not set
fetchAsNeeded to true.

When the detail data set is a TableDataSet, the fetchAsNeeded parameter is
ignored and all data is fetched at once.

Editing data in master-detail data sets
You cannot delete or change a value in a master link column (a column
that is linked to a detail data set) if the master record has detail records
associated with it.

E s t a b l i s h i n g a m a s t e r - d e t a i l r e l a t i o n s h i p 9-5

S t e p s t o c r e a t i n g a m a s t e r - d e t a i l r e l a t i o n s h i p

By default, detail link columns will not be displayed in a JdbTable UI
component, because these columns duplicate the values in the master link
columns, which are displayed. When a new row is inserted into the detail
data set, JBuilder will insert the matching values in the non-displayed
fields.

Steps to creating a master-detail relationship
To create a master-detail link between two data set components, one
which represents the master data set and another which represents the
detail data set,

1 Create or open an application with at least two data set components,
one of which represents the master data set and another which
represents the detail data set, or go to a tutorial that uses the sample
database files shipped with JBuilder, “Tutorial: Creating a master-detail
relationship” on page 9-6.

2 Select the Frame file in the content pane. Select the Design tab to
activate the UI designer.

3 Select the detail data set in the component tree, and select its masterLink
property from the Properties page of the Inspector. In the masterLink
custom property editor, specify the following properties for the detail
data set:

• The masterDataSet property provides a choice menu of available data
sets. Choose the data set that contains the master records for the
current detail data set.

• The link columns describe which columns to use when determining
matching data between the master and detail data set components.
To select a column from the master data set to link with a column in
the detail data set, double-click the column name in the list of
Available Master Columns. This column will now display in the Master
Link Columns property.

• To select the column of the detail data set to link with a column in
the master data set, double-click the column name from the list of
Available Detail Columns. The data type for each column is shown. If
you select a detail column whose type does not match the
corresponding master column, nothing will happen since the link
columns must match by type. When properly selected, this column
will display in the Detail Link Columns property.

• To link the two data sets on more than one column, repeat the
previous two steps until all columns are linked.

9-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : C r e a t i n g a m a s t e r - d e t a i l r e l a t i o n s h i p

• To delay fetching detail records until they are needed, check the
Delay Fetch Of Detail Records Until Needed box. See “Fetching
details” on page 9-3 for more discussion on this option.

• To verify that the data sets are properly connected, click Test Link.
The status area will indicate Running, Success, or Failed.

• To complete the specification, click OK.

4 Add visual components (such as JdbTables) to enable you to view and
modify data. Set the dataSet property of one to the master data set, and
set the dataSet property of the other to the detail data set.

5 Compile and run the application. The master data set will display all
records. The detail data set will display the records that match the
values in the linked columns of the current row of the master data set,
but will not display the linked columns.

To save changes back to the tables, see “Saving changes in a master-detail
relationship” on page 9-10.

Tutorial: Creating a master-detail relationship
This tutorial shows how to create a master-detail relationship, using the
sample files shipped with JBuilder. The basic scenario for the sample
application involves constructing two queries, one that selects all of the
unique countries from the COUNTRY table in the employee sample file,
and one that selects all of the employees. This tutorial is available as a
finished project in the /samples/DataExpress/MasterDetail directory of
your JBuilder installation.

The COUNTRY data set is the master data set, with the column
COUNTRY being the field that we will link to EMPLOYEE, the detail data
set. Both data sets are bound to JdbTables, and as you navigate through the
COUNTRY table, the EMPLOYEE table displays all of the employees who
live in the country indicated as the current record.

To create this application,

1 Select File|Close. Select File|New, and double-click the Application
icon. Accept all defaults.

2 Select the Design tab in the content pane.

3 Select a Database component from the Data Express tab of the
component palette, click in the component tree or the UI designer to
add the component to your application.

4 Open the connection property for the Database component in the
Inspector, and set properties as follows, assuming your system is set up
to use the JDataStore sample as described in Chapter 3, “Setting up

E s t a b l i s h i n g a m a s t e r - d e t a i l r e l a t i o n s h i p 9-7

T u t o r i a l : C r e a t i n g a m a s t e r - d e t a i l r e l a t i o n s h i p

JBuilder for database applications” (which includes adding the
DataStore library to the project):

The connection dialog includes a Test Connection button. Click this
button to check that the connection properties have been correctly set.
Results of the connection attempt are displayed beside the button.
When the connection is successful, click OK.

The code generated by the designer for this step can be viewed by
selecting the Source tab and looking for the ConnectionDescriptor code.
Click the Design tab to continue.

5 Select a QueryDataSet component from the Data Express tab, and click in
the component tree to add the component to your application. This
component sets up the query for the master data set. Select the query
property of the QueryDataSet component from the Inspector, and set as
follows:

Click the Test Query button to ensure that the query is runnable. When
the status area indicates Success, click OK to close the dialog.

6 Add another QueryDataSet component to your application. Select its
query property in the Inspector. This will set up the query for the detail
data set. In the query custom property editor, set the following
properties:

Click the Test Query button to ensure that the query is runnable. When
the status area indicates Success, click OK to close the dialog.

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to your local copy of
/jbuilder/samples/JDataStore/datastores/employee.jds

Username Enter your name

Password not required

Property name Value

Database database1

SQL Statement select * from COUNTRY

Property name Value

Database database1

SQL Statement select * from EMPLOYEE

9-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : C r e a t i n g a m a s t e r - d e t a i l r e l a t i o n s h i p

7 Select the masterLink property for the detail data set (queryDataSet2) in the
Inspector. In the masterLink property editor, set the properties as follows:

• The Master DataSet property provides a choice menu of available data
sets. Choose the data set that contains the master records for the
current detail data set, in this case select queryDataSet1.

• The link fields describe which fields to use when determining
matching data between the master and detail data set components.
To select a column from the master data set to link with a column in
the detail data set, select the column name, in this case COUNTRY (a
string field), from the list of Available Master Columns then click the Add
to Master Links button. This column displays in the Master Link
Columns box.

• To select the column from the detail data set to link with a column in
the master data set, select the column name, in this case
JOB_COUNTRY (a string field), from the list of Available Detail
Columns, then click the Add to Detail Links button. This column
displays in the Detail Link Columns box.

• The Delay Fetch Of Detail Records Until Needed option determines
whether the records for the detail data set can be fetched all at once or
can be fetched for a particular master when needed (when the master
record is visited). Uncheck this box to set fetchAsNeeded to false. For
more information on fetching, see “Fetching details” on page 9-3.

• Click Test Link. The dialog should look like below when you are
done. When successful, click OK.

E s t a b l i s h i n g a m a s t e r - d e t a i l r e l a t i o n s h i p 9-9

T u t o r i a l : C r e a t i n g a m a s t e r - d e t a i l r e l a t i o n s h i p

8 Add a DBDisposeMonitor to your application from the More dbSwing tab.
The DBDisposeMonitor will close the DataStore when the window is
closed.

9 Set the DBDisposeMonitor's dataAwareComponentContainer property to ‘this’.

To create a UI for this application,

1 Select contentPane (BorderLayout) in the component tree. Set its layout
property to null.

2 Add a JdbNavToolBar component from the dbSwing tab. Drop the
component in the area at the top of the panel in the UI Designer.
JdbNavToolBar automatically attaches itself to whichever DataSet has
focus.

3 Add a JdbStatusLabel and drop it in the area at the bottom of the panel
in the UI designer. JdbStatusLabel automatically attaches itself to
whichever DataSet has focus.

4 Select a TableScrollPane component from the dbSwing tab, click and
drag the outline for the pane in the upper portion of the UI designer to
add it to the application just under jdbNavToolBar1.

Scrolling behavior is not available by default in any Swing component
or dbSwing extension, so, to get scrolling behavior, we add the
scrollable Swing or dbSwing components to a JScrollPane or a
TableScrollPane. TableScrollPane provides special capabilities to JdbTable
over JScrollPane. See the dbSwing documentation for more information.

5 Drop a JdbTableinto the center of tableScrollPane1 in the UI designer. Set
its dataSet property to queryDataSet1.

6 Add another TableScrollPane to the lower part of the panel in the UI
designer. This will become tableScrollPane2.

7 Drop a JdbTable into tableScrollPane2 and set its dataSet property to
queryDataSet2.

8 Compile and run the application by selecting Run|Run Project.

Now you can move through the master (COUNTRY) records and watch
the detail (EMPLOYEE) records change to reflect only those employees in
the current country.

9-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S a v i n g c h a n g e s i n a m a s t e r - d e t a i l r e l a t i o n s h i p

The running application looks like this:

Saving changes in a master-detail relationship
In JBuilder, data is retrieved from a server or text file into a data set. Once
this data has been “provided” to the data set, you can edit and work with
a local copy of the data programmatically or in data-aware components.
To save the data back to the database or text file, you must “resolve” the
changes back to the database or export the changes to a text file. The
different options for resolving the changes back to the database are
discussed in “Saving changes back to your data source” on page 8-1, and
the options for exporting data to a text file are discussed in “Exporting
data” on page 10-5.

In a master-detail relationship, at least two sets of data (database tables
and/or text data files in any combination) are being provided to at least
two data sets. In general, there are three ways you can resolve changes in a
master-detail relationship:

• Place a JButton in your application and write the resolver code for the
button that commits the data for each data set. An example of this can be
found in the topic “Saving changes from a QueryDataSet” on page 8-2.

If both data sets are QueryDataSets, you can save changes in both the
master and the detail tables using the saveChanges(DataSet[]) method of
the Database rather than the saveChanges() method for each data set.
Using a call to the Database.saveChanges(DataSet[]) method keeps the
data sets in sync and commits all data in one transaction. Using
separate calls to the DataSet.saveChanges() method does not keep the
data sets in sync and commits the data in separate transactions. See

E s t a b l i s h i n g a m a s t e r - d e t a i l r e l a t i o n s h i p 9-11

S a v i n g c h a n g e s i n a m a s t e r - d e t a i l r e l a t i o n s h i p

“Resolving master-detail data sets to a JDBC data source” on page 9-11
for more information.

• Place a QueryResolver in your application to customize resolution. See
“Customizing the default resolver logic” on page 8-16 for more
information.

• Place a JdbNavToolBar in your application and use the Save button to
save changes.

You can use a single JdbNavToolBar for both data sets. The JdbNavToolBar
component automatically attaches itself to whichever DataSet has focus.

See also
Chapter 8, “Saving changes back to your data source”

Resolving master-detail data sets to a JDBC data source

Because a master-detail relationship by definition includes at least two
sets of data, the simplest way to resolve data back to the data source is to
use the saveChanges(DataSet[]) method of the Database component
(assuming that QueryDataSets are used).

Executing the Database.saveChanges(DataSet[]) method causes all of the
inserts, deletes, and updates made to the data sets to be saved to the JDBC
data source in a single transaction, by default. When the masterLink
property has been used to establish a master-detail relationship between
two data sets, changes across the related data sets are saved in the
following sequence:

1 Deletes
2 Updates
3 Inserts

For deletes and updates, the detail data set is processed first. For inserts,
the master data set is processed first.

If an application is using a JdbNavToolBar for save and refresh functionality,
the fetchAsNeeded property should be set to false to avoid losing unsaved
changes. This is because when the fetchAsNeeded property is true, each
detail set is fetched individually, and is also refreshed individually. If the
Database.saveChanges(DataSet[]) method is used instead, all edits will be
posted in the right order and in the same transaction to all linked data
sets.

9-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

I m p o r t i n g a n d e x p o r t i n g d a t a f r o m a t e x t f i l e 10-1

C h a p t e r

10
Chapter10Importing and exporting data

from a text file
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

In JBuilder, a TableDataSet component is used to store data imported from
a text file. Once the data is provided to the data set, it can be viewed and
modified. To save changes back to the text file, export the data back to the
text file.

To import data from a text file, use the TextDataFile component to provide
the location of the text file and parameters specific to its structure. Use a
StorageDataSet, such as a TableDataSet component, to store the data locally
for viewing and editing. Create Column objects so the TableDataSet knows
the type of data and the name of the field for each column of data.

Columns of a TableDataSet are defined by adding columns in the Source
window, the UI designer, or by loading a text file with a valid .SCHEMA
file. This topic discusses the first two options. Importing data using an
existing .SCHEMA file is discussed in “Tutorial: An introduction to
JBuilder database applications” on page 5-4. Your text file has a valid
.SCHEMA file only if it has previously been exported by JBuilder.

These are the topics covered:

• Tutorial: Importing data from a text file
• Adding columns to a TableDataSet in the editor
• Importing formatted data from a text file
• Retrieving data from a JDBC data source
• Exporting data

10-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : I m p o r t i n g d a t a f r o m a t e x t f i l e

Tutorial: Importing data from a text file
This tutorial shows how to provide data to an application using a
TableDataSet component and a comma-delimited text data file. This type of
file can be exported from most desktop databases. This application is
available as a finished project in TextFileImportExport.jpr in the
/samples/DataExpress/TextFileImportExport directory of your JBuilder
installation.

For this example, create a text file to import as follows:

1 Open a text editor.

2 Enter the following three rows and two columns of data (a column of
integer values and a column of string values) into a blank text file. Press
the Enter or Return key at the end of each row. Enter the quotation marks
as well as the data.

1,"A"
2,"B"
3,"C"

3 Save the file with the name ImportTest.txt. Close the file.

To read the data from this text file and create a database application in
JBuilder,

1 Select File|Close. Select File|New. Double-click the Application icon
and accept all defaults.

2 Select the Design tab in the content pane.

3 Select a TextDataFile component from the Data Express tab of the
component palette, and click in the component tree or the UI designer
to add the component to your application. Select the following
properties in the Inspector, and set their values as indicated:

A delimiter in a text file is a character that is used to define the beginning
and end of a string field. By default, the delimiter for string data types is a
double quotation mark. For this tutorial, no changes are needed.

A separator in a text file is a character that is used for differentiating
between column values. By default, the separator character is a tab (/t).
For this example, the separator is a comma (,). When using other text
files, modify these properties accordingly.

Specify the complete path and file name for the fileName field.

Property name Value

delimiter " (double quote)

separator , (comma)

fileName <path to>ImportTest.txt

I m p o r t i n g a n d e x p o r t i n g d a t a f r o m a t e x t f i l e 10-3

T u t o r i a l : I m p o r t i n g d a t a f r o m a t e x t f i l e

4 Select a TableDataSet component from the Data Express tab of the
component palette, click in the component tree or UI designer to add
the component to your application. Select its dataFile property, and set
it to textDataFile1.

5 Add columns to the TableDataSet. This tutorial describes adding
columns to the data set through the UI designer. To add columns using
the editor, see “Adding columns to a TableDataSet in the editor” on
page 10-4. If you have completed this tutorial previously and exported
the data to a text file, JBuilder created a .SCHEMA file that provides
column definitions when the text file is opened and you do not need to
add columns manually.

Click the expand icon to the left of the TableDataSet component to
expose existing columns. In this case, there are no existing columns, so
select <new column> and set the following properties in the Inspector for
the first column:

• dataType to SHORT
• caption and columnName to my_number

6 Set the properties for the second column by selecting <new column> again.
Set the following properties in the Inspector:

• dataType to STRING
• caption and columnName to my_string

To make the data available to your application,

1 Add a TableScrollPane to the panel in the UI designer, then drop a
JdbTable into the center of it.

2 Set the dataSet property of the jdbTable1 to tableDataSet1. You will see an
error dialog if a valid data file is not specified or if the columns are not
defined correctly. If you do not instantiate a visual component to view
data, you must explicitly open the file in the source code to have access
to the data.

3 Select Run|Run Project to compile and run the application.

The running application looks like this, after adding file export capabilities,
as discussed in “Tutorial: Exporting data to a text file” on page 10-6.

4 Close the running application.

10-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A d d i n g c o l u m n s t o a T a b l e D a t a S e t i n t h e e d i t o r

When you run this application, the data in the text file is loaded into a
TableDataSet and displayed in the visual table component to which it is
bound. You can now view, edit, add, and delete data from the data set. A
TableDataSet component can be used as either a master or a detail table in a
master-detail relationship. To save changes back to the text file, you must
export the data back. See “Exporting data” on page 10-5 for more
information on exporting.

Adding columns to a TableDataSet in the editor
You can add columns to the TableDataSet in two ways: visually in the UI
designer and with code in the editor on the Source tab. Adding columns in
the UI designer is covered in “Tutorial: Importing data from a text file” on
page 10-2. If you previously exported to a text file, JBuilder created a
.SCHEMA file that provides column definitions when the text file is next
opened; therefore, you do not need to add columns manually.

To add the columns using the editor, you define new Column objects in the
class definition for Frame1.java as follows:

1 Select Frame1.java in the content pane, then select the Source tab. You
will see the class definition in the Source window. Add the follow line
of code:

Column column1 = new Column();
Column column2 = new Column();

2 Find the jbInit() method in the source code. Define the name of the
column and the type of data that will be stored in the column, as
follows:

column1.setColumnName("my_number");
column1.setDataType(com.borland.dx.dataset.Variant.SHORT);

column2.setColumnName("my_string");
column2.setDataType(com.borland.dx.dataset.Variant.STRING);

3 Add the new columns to the TableDataSet in the same source window
and same jbInit() method, as follows:

tableDataSet1.setColumns(new Column[] { column1,column2 });

4 Compile the application to bind the new Column objects to the data set,
then add any visual components.

Importing formatted data from a text file
Data in a column of the text file may be formatted for exporting data in a
way that prevents you from importing the data correctly. You can solve
this problem by specifying a pattern to be used to read the data in an

I m p o r t i n g a n d e x p o r t i n g d a t a f r o m a t e x t f i l e 10-5

R e t r i e v i n g d a t a f r o m a J D B C d a t a s o u r c e

exportDisplayMask. The exportDisplayMask property is used for importing
data when there is no .SCHEMA file associated with the text file. If there is
a .SCHEMA file, its settings have precedence. The syntax of patterns is
defined in “Edit/display mask patterns” in the DataExpress Component
Library Reference.

Date and number columns have default display and edit patterns. If you
do not set the properties, default edit patterns are used. The default
patterns come from the java.text.resources.LocaleElements file that
matches the column’s default locale. If no locale is set for the column, the
data set’s locale is used. If no locale is set for the data set, the default
system locale is used. The default display for a floating point number
shows three decimal places. If you want more decimal places, you must
specify a mask.

Retrieving data from a JDBC data source
The following code is an example of retrieving data from a JDBC data
source into a TextDataFile. Once the data is in a TextDataFile, you can use a
StorageDataSet, such as a TableDataSet component, to store the data locally
for viewing and editing. For more information on how to do this, see
“Tutorial: Importing data from a text file” on page 10-2.

Database db = new Database();
db.setConnection(new

com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:oracle:thin:@" +
datasource, username, password));

QueryDataSet qds = new QueryDataSet();
qds.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(db, "SELECT

* FROM THETABLE", null, true, Load.ALL));
TextDataFile tdf = new TextDataFile();
tdf.setFileName("THEDATA.TXT");
tdf.save(qds);

This code produces a data file and an associated .SCHEMA file.

You can use this type of data access to create a database table
backup-and-restore application that works from the command line, for
example. To save this information back to the JDBC data source, see
“Saving changes loaded from a TextDataFile to a JDBC data source” on
page 10-11.

Exporting data
Exporting data, or saving data to a text file, saves all of the data in the
current view to the text file, overwriting the existing data. This topic
discusses several ways to export data. You can export data that has been
imported from a text file back to that file or to another file. You can export

10-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E x p o r t i n g d a t a

data from a QueryDataSet or a ProcedureDataSet to a text file. Or you can
resolve data from a TableDataSet to an existing SQL table.

Exporting data to a text file is handled differently than resolving data to a
SQL table. Both QueryDataSet and TableDataSet are StorageDataSet
components. When data is provided to the data set, the StorageDataSet
tracks the row status information (either deleted, inserted, or updated) for
all rows. When data is resolved back to a data source like a SQL server, the
row status information is used to determine which rows to add to, delete
from, or modify in the SQL table. When a row has been successfully
resolved, it obtains a new row status of resolved (either
RowStatus.UPDATE_RESOLVED, RowStatus.DELETE_RESOLVED, or
RowStatus.INSERT_RESOLVED). If the StorageDataSet is resolved again,
previously resolved rows will be ignored, unless changes have been made
subsequent to previous resolving. When data is exported to a text file, all of
the data in the current view is written to the text file, and the row status
information is not affected.

Data exported to a text file is sensitive to the current sorting and filtering
criteria. If sort criteria are specified, the data is saved to the text file in the
same order as specified in the sort criteria. If row order is important,
remove the sort criteria prior to exporting data. If filter criteria are
specified, only the data that meets the filter criteria will be saved. This is
useful for saving subsets of data to different files, but could cause data loss
if a filtered file is inadvertently saved over an existing data file.

Warning Remove filter criteria prior to saving, if you want to save all of the data
back to the original file.

Tutorial: Exporting data to a text file
When you export data from a TableDataSet to a text file, JBuilder creates a
.SCHEMA file that defines the columns by name and data type. The next
time you import the data into JBuilder, you do not have to define the
columns, because this information is already specified in the .SCHEMA file.

Building on the example in “Tutorial: Importing data from a text file” on
page 10-2, this tutorial demonstrates how to use the UI designer to add a
button for saving the data, with any changes, back to the same text file.

1 If you have not already done so, create the project in the “Tutorial:
Importing data from a text file” topic. If you have created this project,
open it now.

2 Select the Design tab of the content pane.

3 Select contentPane (BorderLayout) in the content pane and change its
layout property to ‘null’ in the Inspector.

4 Select tableScrollPane1 in the component tree. In the UI designer, grab
the upper handle and resize the component to allow room to add a

I m p o r t i n g a n d e x p o r t i n g d a t a f r o m a t e x t f i l e 10-7

E x p o r t i n g d a t a

button. See the screen shot of the running application further in this
tutorial for general placement of components.

5 Add a JButton component from the Swing tab to the UI designer. On the
Properties tab of the Inspector, set the text property to Save Changes.

6 Click the Events tab of the Inspector. Select, then double-click the
actionPerformed() method. This changes the focus of the AppBrowser
from the Design tab to the Source tab, and displays the stub for the
actionPerformed() method in the source code.

Add the following code to the actionPerformed() method:

try {
 tableDataSet1.getDataFile().save(tableDataSet1);
 System.out.println("Changes saved");
 }
catch (Exception ex) {
 System.out.println("Changes NOT saved");
 System.err.println("Exception: " + ex);
 }

7 Run the application by selecting Run|Run Project.

When you run the application, if it compiles successfully, the application
appears in its own window.

Data is displayed in a table, with a Save Changes button. Make and view
changes as follows:

1 With the application running, select the string field in the first record of
the Frame window and change the value in the field from A to Apple. Save
the changes back to the text file by clicking the Save Changes button.

2 View the resulting text file in a text editor. It will now contain the
following data:

1,"Apple"
2,"B"
3,"C"

3 Close the text file.

JBuilder automatically creates a .SCHEMA file to define the contents of
the text file.

10-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E x p o r t i n g d a t a

4 View the .SCHEMA file in a text editor. Notice that this file contains
information about the name of the fields that have been exported and
the type of data that was exported in that field. It looks like this:

[]
FILETYPE = VARYING
FILEFORMAT = Encoded
ENCODING = ISO8859_1
LOCALE = en_US
DELIMITER = "
SEPARATOR = ,
FIELD0 = my_number,Variant.SHORT,-1,-1,
FIELD1 = my_string,Variant.STRING,-1,-1,

5 Close the .SCHEMA file.

You can continue to edit, insert, delete, and save data until you close the
application, but you must click the Save Changes button to write any
changes back to the text file. When you save the changes, the existing file
will be overwritten with data from the current view.

Tutorial: Using patterns for exporting numeric, date/time,
and text fields

By default, JBuilder expects data entry and exports data of date, time, and
currency fields according to the locale property of the column. You can
use the exportDisplayMask property to read or save date, time, and number
fields in a different pattern. Complete the example in “Tutorial: Exporting
data to a text file” on page 10-6, close the running application, then
complete the following steps in JBuilder. These steps demonstrate creating
an exportDisplayMask for a new column of type DATE.

1 Select Frame1.java in the content pane, then select the Design tab.
Expand tableDataSet1 in the component tree by clicking on the expand
icon to its left. Select <new column>, then modify the column’s properties
in the Inspector as follows:

• dataType to DATE
• caption and columnName to my_date

2 Run the application. In the running application window, enter a date in
the locale syntax of your computer in the my_date column of the first
row. For example, with the locale property set to English (United
States), you must enter the date in a format of MM/dd/yy, like
11/16/95. Click the Save Changes button to save the changes back to
the text file.

3 View the text file in a text editor. It will now contain the following data:

1,"Apple",11/16/95
2,"B"
3,"C"

I m p o r t i n g a n d e x p o r t i n g d a t a f r o m a t e x t f i l e 10-9

E x p o r t i n g d a t a

4 Close the text file.

5 View the .SCHEMA file in a text editor. Notice that the new date field
has been added to the list of fields. It looks like this:

[]
FILETYPE = VARYING
FILEFORMAT = Encoded
ENCODING = ISO8859_1
LOCALE = en_US
DELIMITER = "
SEPARATOR = ,
FIELD0 = my_number,Variant.SHORT,-1,-1,
FIELD1 = my_string,Variant.STRING,-1,-1,
FIELD2 = my_date,Variant.DATE,-1,-1,

6 Close the .SCHEMA file.

The next steps show what happens when you change the date pattern,
edit the data, and save the changes again.

1 Close the running application and the text files and return to the
JBuilder UI designer. Select the my_date column and enter the
following pattern into the exportDisplayMask property in the Inspector:
MM-dd-yyyy. The syntax of patterns is defined in “String-based patterns
(masks)” in the DataExpress Component Library Reference. This type of
pattern will read and save the date field as follows: 11-16-1995.

2 The application would produce an error now if you tried to run it,
because the format of the date field in the text file does not match the
format the application is trying to open. Manually edit the text file and
remove the value “,11/16/95” from the first row.

Instead of the above step, you could manually enter code that would
establish one exportDisplayMask for importing the data and another
exportDisplayMask for exporting the data.

3 Run the application. In the running Frame window, enter a date in the
my_date column of the first row using the format of the
exportDisplayMask property, such as 11-16-1995. Click the Save Changes
button to save the changes back to the text file.

4 View the text file in a text editor. It will now contain the following data:

1,"Apple",11-16-1995
2,"B"
3,"C"

5 Close the text file.

6 View the .SCHEMA file in a text editor. Notice that the date field
format is displayed as part of the field definition. When the default

10-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E x p o r t i n g d a t a

format is used, this value is blank, as it is in the FIELD0 definition. It
looks like this:

[]
FILETYPE = VARYING
FILEFORMAT = Encoded
ENCODING = ISO8859_1
LOCALE = en_US
DELIMITER = "
SEPARATOR = ,
FIELD0 = my_number,Variant.SHORT,-1,-1,
FIELD1 = my_string,Variant.STRING,-1,-1,
FIELD2 = my_date,Variant.DATE,-1,-1,MM-dd-yyyy

7 Close the .SCHEMA file.

When the text data file is imported next, the data will be imported from
the information in the .SCHEMA file. To view data in the table in a
different pattern, set the displayMask property. To modify data in the table
using a different pattern, set the editMask property. These properties affect
viewing and editing of the data only; they do not affect the way data is
saved. For example, to enter data into a currency field without having to
enter the currency symbol each time, use a displayMask that uses the
currency symbol, and an editMask that does not contain a currency symbol.
You can choose to save the data back to the text file with or without the
currency symbol by setting the exportDisplayMask.

Exporting data from a QueryDataSet to a text file

Exporting data from a QueryDataSet to a text file is the same as exporting
data from a TableDataSet component, as defined in “Tutorial: Exporting
data to a text file” on page 10-6. JBuilder will create a .SCHEMA file that
defines each column, its name, and its data type so that the file can be
imported back into JBuilder more easily.

Note BLOB columns are not exported, they are ignored when other fields are
exported.

Saving changes from a TableDataSet to a SQL table

Use a QueryResolver to resolve changes back to a SQL table. For more
information on using the QueryResolver to save changes to a SQL table, see
“Customizing the default resolver logic” on page 8-16.

Prior to resolving the changes back to the SQL table, you must set the table
name and column names of the SQL table, as shown in the following code
snippet. The SQL table and .SCHEMA file must already exist. The
applicable .SCHEMA file of the TableDataSet must match the configuration
of the SQL table. The variant data types of the TableDataSet columns must

I m p o r t i n g a n d e x p o r t i n g d a t a f r o m a t e x t f i l e 10-11

E x p o r t i n g d a t a

map to the JDBC types of server table. By default, all rows will have a
status of INSERT.

tabledataset1.setTableName(string);
tableDataSet1.SetRowID(columnName);

Saving changes loaded from a TextDataFile to a JDBC
data source

By default, data is loaded from a TextDataFile with a status of
RowStatus.Loaded. Calling the saveChanges() method of a QueryDataSet or a
ProcedureDataSet will not save changes made to a TextDataFile because
these rows are not yet viewed as being inserted. To enable changes to be
saved and enable all rows loaded from the TextDataFile to have an
INSERTED status, set the property TextDataFile.setLoadAsInserted(true).
Now when the saveChanges() method of a QueryDataSet or a ProcedureDataSet
is called, the data will be saved back to the data source.

For more information on using the QueryResolver to save changes to a SQL
table, see “Customizing the default resolver logic” on page 8-16.

10-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-1

C h a p t e r

11
Chapter11Using data modules to simplify

data access
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

A data module is a specialized container for data access components. Data
modules simplify data access development in your applications. Data
modules offer you a centralized container for all your data access
components. This enables you to modularize your code and separate the
database access logic and business rules in your applications from the user
interface logic in the application. You can also maintain control over the
use of the data module by delivering only the .class files to application
developers.

Once you define your DataSet components and their corresponding Column
components in a data module, all applications that use the module have
consistent access to the data sets and columns without requiring you to
recreate them in every application each time you need them. Data
modules do not need to reside in the same directory or package as your
project. They can be stored in a location for shared use among developers
and applications.

DataModule is an interface which declares the basic behavior of a data
module. To work with this interface programmatically, implement it in
your data module class and add your data components.

When you create a data module and add any component that would
automatically appear under the Data Access section of the content pane
(Database, DataSet, DataStore), a getter() method is generated. This means
that any of these components will be available in a choice list for the

11-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a m o d u l e u s i n g t h e d e s i g n t o o l s

project that references the data module. This means, for example, that you
can

• Add a Database component to a data module.

• Compile the data module.

• Add a QueryDataSet component to the application that contains the data
module or to the data module itself.

• In the query property dialog, select “DataModule1.database1” (or
something similar) from the Database choice box.

This chapter discusses two ways to create a data module:

• Using the JBuilder visual design tools
• Using the Data Modeler

Creating a data module using the design tools

Create the data module with the wizard

To create a data module,

1 Create a new project.

2 Select File|New and double-click the Data Module icon.

3 Specify the package and class name for your data module class.
JBuilder automatically fills in the Java file name and path based on your
input. To create the data module using the JBuilder designer, deselect
Invoke Data Modeler.

4 Click the OK button to close the dialog. The data module class is
created and added to the project.

5 Double-click the data module file in the project pane to open it in the
content pane.

6 View the source code.

You’ll notice that the code generated by the wizard for the data module
class is slightly different than the code generated by other wizards. The
getDataModule() method is defined as public static. The purpose of this
method is to allow a single instance of this data module to be shared by
multiple frames. The code generated for this method is:

public static DataModule1 getDataModule() {
if (myDM == null){

 myDM = new DataModule1();}
return myDM;

 }

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-3

C r e a t i n g a d a t a m o d u l e u s i n g t h e d e s i g n t o o l s

The code for this method

• Declares this method as static. This means that you are able to call
this method without a current instantiation of a DataModule class
object.

• Returns an instance of the DataModule class.

• Checks to see if there is a current instantiation of a DataModule.

• Creates and returns a new DataModule if one doesn’t already exist.

• Returns a DataModule object if one has been instantiated.

The data module class now contains all the necessary methods for your
custom data module class, and a method stub for the jbInit() to which
you add your data components and custom business logic.

Add data components to the data module

To customize your data module using the UI designer,

1 Double-click the data module file in the project pane to open it in the
content pane.

2 Select the Design tab of the content pane to activate the UI designer.

3 Add your data components to your data module class. For example,

1 Select a Database component from the Data Express tab of the
component palette.

2 Click in the component tree or the UI designer to add the Database
component to the DataModule.

3 Set the connection property using the database connectionDescriptor.
Setting the connection property in the Inspector is discussed in
Chapter 4, “Connecting to a database.”

The data components are added to a data module just as they are added to
a Frame file. For more information on adding data components, see
Chapter 5, “Retrieving data from a data source.”

Note JBuilder automatically creates the code for a public method that “gets”
each DataSet component you place in the data module. This allows the
DataSet components to appear as (read-only) properties of the DataModule.
This also allows DataSet components to be visible to the dataSet property of
data-aware components in the Inspector when data-aware component
and data modules are used in the same container.

11-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a m o d u l e u s i n g t h e d e s i g n t o o l s

After you have completed this section, your data module file will look
similar to this:

package datamoduleexample;

import com.borland.dx.dataset.*;
import com.borland.dx.sql.dataset.*;

public class DataModule1 implements DataModule{
 private static DataModule1 myDM;
 Database database1 = new Database();
 public DataModule1() {
 try {
 jbInit();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 private void jbInit() throws Exception{
 database1.setConnection(new

 com.borland.dx.sql.dataset.ConnectionDescriptor("
 jdbc:borland:dslocal:/usr/local/jbuilder/samples/JDataStore/
 datastores/employee.jds", "your name", "", false,
 "com.borland.datastore.jdbc.DataStoreDriver"));

 }
 public static DataModule1 getDataModule() {
 if (myDM == null)
 myDM = new DataModule1();
 return myDM;
 }
 public com.borland.dx.sql.dataset.Database getDatabase1() {
 return database1;
 }
}

Adding business logic to the data module

Once the data components are added to the data module and
corresponding properties set, you can add your custom business logic to
the data model. For example, you may want to give some users the rights
to delete records and not give these rights to others. To enforce this logic,
you add code to various events of the DataSet components in the data
module.

Note The property settings and business logic code you add to the components
in the data model cannot be overridden in the application that uses the
data model. If you have behavior that you do not want to enforce across
all applications that use this data model, consider creating multiple data
models that are appropriate for groups of applications or users.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-5

C r e a t i n g a d a t a m o d u l e u s i n g t h e d e s i g n t o o l s

To add code to the events of a component,

• Double-click the data module file in the project pane to open it in the
content pane.

• Select the Design tab of the content pane to activate the UI designer.

• Select the component to which you want to add business logic, then
click the Events tab in the Inspector.

• Double-click the event where you want the business logic to reside.
JBuilder creates a stub in the .java source file for you to add your
custom business logic code.

Using a data module

To use a data module in your application, it must first be saved and
compiled. In your data module,

1 Select File|Save All. Note the name of the project, the package, and the
data module.

2 Compile the data module class by selecting Run|Make Project. This
creates the data module class files in the directory specified in Project|
Project Properties, Output Path.

3 Select File|Close.

To reference the data module in your application, you must first add it to
your project as a required library.

Adding a required library to a project
These general instructions for adding a required library use a data module
as a specific example, but the same steps can be used to add any required
library. A library could be a class file, such as a data module, or an
archive, such as a .jar file.

Select Project|Project Properties. Select Required Libraries from the Paths
tab, and add the class or archive file for the new library. In the specific
case of adding a data module, this will be the data module .class file you
just compiled. To do this,

1 Click Add.

2 Click New.

3 Enter the name for the library (like Employee Data Module).

4 Select the location where you want your <library name>.library file to
go. You have a choice between JBuilder, Project, and User Home. If you
are running JBuilder from a network, and you want your library to be
accessible to everyone, you should select JBuilder. This will put your
<library name>.library file in your /lib folder within your JBuilder

11-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a m o d u l e u s i n g t h e d e s i g n t o o l s

installation. If you are the only developer that needs access to your
library, you may want to choose one of the other options, so the
.library file will be stored locally.

5 Click Add.

6 Browse to the folder which contains the path to the class file or archive
you wish to add. JBuilder automatically determines the paths to class
files, source files, and documentation within this folder.

7 Click OK.

8 Click OK.

9 Click OK.

10 At this point you should see your new library added to the list of
required libraries.

Referencing a data module in your application
Now that you have added the data module as a required library, here are
the remaining steps for referencing a data module in your application:

1 Select File|New. Select Application. Enter the appropriate package and
class information. (Optionally, open an existing project using File|
Open).

2 Select the application’s Frame file in the content pane.

3 Make sure Data Express is specified as one of the Required Libraries. If
Data Express is not listed under Required Libraries in the Project
Properties,

1 Click Add.
2 Select Data Express.
3 Click OK until the Project Properties dialog is closed.

4 Import the package that the data module class belongs to (if it is outside
your package) by selecting Wizards|Use Data Module.

5 Click the ellipsis to open the Select Data Module dialog. A tree of all
known packages and classes is displayed. Browse to the location of the
class files generated when the data module was saved and compiled
(this should be under a node of the tree with the same name as your
package, if the data module is part of a package). Select the data
module class. If you do not see the data module class here, check to
make sure the the project compiled without errors and that it was
properly added to the required libraries for the project.

6 Click OK. If you get an error message at this point, double check the
required libraries in the project properties, and the location of the class
file for your data module.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-7

C r e a t i n g a d a t a m o d u l e u s i n g t h e d e s i g n t o o l s

Click the Design tab to open the UI designer; the instance of the data
module appears in the content pane. Clicking the entry for the data
module does not display its DataSet components nor its Column
components. This is intentional to avoid modification of the business logic
contained in the data module from outside.

When designing your application, you’ll notice that the dataSet property
of a UI component includes all the DataSetView and StorageDataSet
components that are included in your data module. You have access to
them even though they are not listed separately in the content pane.

If you have a complex data model and/or business logic that you don’t
want another developer or user to manipulate, encapsulating it in a
reusable component is an ideal way to provide access to the data but still
enforce and control the business logic.

Understanding the Use Data Module dialog
When you select Wizards|Use Data Module, you will see the following
dialog:

Select a data module by clicking the ellipsis in the DataModule class field.
A tree of all known packages and classes is displayed. If you do not see
your DataModule class in this list, use Project|Project Properties to add the
package or archive to your libraries. Browse to the location of the class
files generated when the data module was saved and compiled. Select the
data module class.

In the Java Field Declaration box, the default field name is the name of the
data module, followed by a “1”. It is the name which will be used for the
member variable to generate in code. The data module will be referred to

11-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

by the name given in the component tree. Select a name that describes the
data in the data module, such as EmployeeDataModule.

You can choose from the following ways of using the DataModule in your
application:

• Create new instance of DataModule - If you only have a single Frame
subclass in your application, select this option.

• Share (static) instance of DataModule - If you plan to reference the data
module in multiple frames of your application, and want to share a
single instance of the custom DataModule class, select this option.

• Caller sets instance with setModule() - Select this option when you
have several different data modules, for instance, a data module that
gets the data locally and one that gets the data remotely.

Click OK to add the data module to the package and inject the appropriate
code into the current source file to create an instance of the data module.

Based on the choices shown in the dialog above, the following code will be
added to the jbInit() method of the Frame file. Note that Share (Static)
Instance of Data Module is selected:

dataModule12 = com.borland.samples.dx.datamodule.DataModule1.getDataModule();

If Create New Instance Of DataModule is selected, the following code will
be added to the jbInit() method of the Frame file:

dataModule12 = new com.borland.samples.dx.datamodule.DataModule1();

If Caller sets instance with SetModule() is selected, a setModule() method is
added to the class being edited.

Creating data modules using the Data Modeler
The JBuilder IDE provides tools that can help you quickly create
applications that query a database. The Data Modeler can build data
modules that encapsulate a connection to a database and the queries to be
run against the database. The Data Module 2-tier Application wizard can
then use that data module to create a client-server database application.

Creating queries with the Data Modeler

JBuilder can greatly simplify the task of viewing and updating your data
in a database. The JBuilder Data Modeler lets you visually create SQL
queries and save them in JBuilder Java data modules.

To begin a new project,

1 Choose File|New Project to start the Project wizard.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-9

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

2 Choose a location and name for the project.

3 Click the Finish button.

For more specific information about creating projects, see the online help
topic “Creating and managing projects.”

To display the Data Modeler,

1 Choose File|New.

2 Double-click the Data Module icon.

3 Enter the package and class name for the data module you are creating,
and check the Invoke Data Modeler option.

4 Click OK. The Data Modeler displays.

To open an existing Java data module in the Data Modeler,

1 Right-click the module in the project pane.

2 Choose Open With Data Modeler.

Opening a URL
To begin building an SQL query, you must first open a connection URL.
There are several ways you can do this:

• Double-click the URL that accesses your data

• Choose the expand icon.

• Select the URL and choose Database|Open Connection URL.

11-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

If the database you want to access is not listed under Database URLs in the
Data Modeler, you can add it.

1 Choose Database|Add Connection URL to display the New URL
dialog box.

2 Select an installed driver in the drop-down Driver list or type in the
driver you want. For the samples, you can select
com.borland.datastore.jdbc.DataStoreDriver.

3 Type in the URL or use the Browse button to select the URL of the data
you want to access. For the samples, you can select
/samples/JDataStore/datastores/employee.jds. The employee.jds
database is located under the samples directory of your JBuilder
installation, which may be different on your system. You can use the
Browse button to browse to this file to reduce the chance of making a
typing error.

Beginning a query
Begin building a query by selecting columns you want to add to the query
from a table, or by selecting an aggregate function that operates on a
specific column.

To view the tables, double-click the Tables node or choose the Tables
expand icon.

From the list of tables, select the table you want to query and double-click
it. Double-click the Columns node to view all the columns in the selected
table.

The SELECT statement is the data retrieval statement that returns a
variable number of rows of a fixed number of columns. The Data Modeler
helps you build the SELECT statement.

• The SELECT clause specifies the list of columns to be retrieved. To add
one or more columns to a query’s SELECT statement,

1 Select a column you want to add from the table you want to access.

2 Click the Copy button.

The name of the selected column appears in the Selected Columns
box and the table name appears in the Queries panel at the top.
Continue selecting columns until you have all you want from that
table. If you want to select all columns, click the Copy All button.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-11

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

• Aggregate functions provide a summary value based on a set of values.
Aggregate functions include SUM, AVG, MIN, MAX, and COUNT. To
add an aggregate function to the query,

1 Click the Aggregate > button to display a dialog box.

2 Click the column whose data values you want aggregated in the
Available Columns list.

3 Click the function you want to use on that column from the
Aggregate Functions column.

4 If you want the function to operate on only unique values of the
selected column, check the Distinct check box.

5 Choose Add Aggregate to add the function to your query.

As you select columns and add functions, your SQL SELECT statement is
being built. When you aggregate data, you must include a GROUP BY

11-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

clause. For information on GROUP BY clauses, see “Adding a Group By
clause.” To view it, click the SQL tab.

Adding a Group By clause
The GROUP BY clause is used to group data returned by a select
statement and is often used in conjunction with aggregate functions.
When used with aggregate functions, the following process is followed:

• First, the data is restricted by a WHERE clause, if one exists.

• Data is grouped by the field indicated in the GROUP BY clause.

• Aggregate functions are applied to the groups and a summary row is
produced (one for each group).

To add a Group By clause to your query, click the Group By tab to display
the Group By page.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-13

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

The Available Columns box lists the columns of the currently selected
query in the Queries panel of the Data Modeler. The Group By box
contains the column names the query will be grouped by. By default, the
query is not grouped by any column until you specify one.

To add a Group By clause to your query,

1 Select the column you want the query grouped by.
2 Click the > button to transfer the column name to the Group By box.

A Group By clause is then added to your SQL SELECT statement. To view
it, click the SQL tab.

Selecting rows with unique column values
You might want to see only those rows that contain unique column
values. If you add the DISTINCT keyword to the SELECT statement, only
rows with unique values are returned. DISTINCT affects all columns in
the SELECT statement.

To add the DISTINCT keyword, check the Distinct option on the Columns
page.

Adding a Where clause
Adding a WHERE clause to a select statement specifies the search
condition that has to be satisfied for rows to be included in the result table.
To add a Where clause to your SQL query, click the Where tab.

The Columns list on the left contains the columns of tables in the currently
selected query in the Queries panel of the Data Modeler. Use the Columns,
Operators, and Functions lists to build the clause of the query in the
Where Clause box.

11-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

To transfer a column as a column name to the Where Clause box, select a
column in the Columns list and click the Paste Column button.

To transfer a column as a parameter as in a parameterized query, select a
column in the Columns list and click the Paste Parameter button.

Select the operator you need in the Operators drop-down list and click the
Paste button. Every Where clause requires at least one operator.

If your query requires a function, select the function you need in the
Functions drop-down list and click the Paste button.

By pasting selections, you are building a Where clause. You can also
directly edit the text in the Where Clause box to complete your query. For
example, suppose you are building a Where clause like this:

WHERE COUNTRY=’USA’

You would select and paste the COUNTRY column and the = operator. To
complete the query, you would type in the data value directly, which in
this case is ‘USA’.

When you are satisfied with your Where clause, click the Apply button.
The Where clause is added to the entire SQL SELECT statement. To view
it, click the SQL tab.

Adding an Order By clause
An ORDER BY clause is used to sort or rearrange the order of the data in
the result table. To specify how rows of a table are sorted,

1 Select the query you want sorted in the Queries panel.

2 Click the Order By tab in the Current Query panel.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-15

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

3 Select the column you want the query sorted by in the Available
Columns box and click the button with the > symbol on it to transfer
that column to the Order By box.

4 Select the sort order direction from the Selected Sort Order Direction
options.

The Ascending option sorts the specified column from the smallest
value to the greatest, while the Descending option sorts the specified
column from the greatest value to the smallest. For example, if the sort
column is alphabetical, Ascending sorts the column in alphabetical
order and Descending sorts it in reverse alphabetical order.

You can sort the query by multiple columns by transferring more than one
column to the Order By box. Select the primary sort column first, then
select the second, and so on. For example, if your query includes a
Country column and a Customer column and you want to see all the
customers from one country together in your query, you would first
transfer the Country column to the Order By box, then transfer the
Customer column.

Editing the query directly
At any time while you are using the Data Modeler to create your query,
you can view the SQL SELECT statement and edit it directly.

To view the SELECT statement, click the SQL tab. To edit it, make your
changes directly in the SELECT statement.

Testing your query
You can view the results of your query in the Data Modeler. The query
created in this topic will not execute, the topics were presented in a way
that made them most understandable, but not in a way that enabled the
query to run property.

To see the results of the query you are building,

1 Click the Test tab.
2 Click the Execute Query button.

If your query is a parameterized query, a Specify Parameters dialog box
appears so you may enter the values for each parameter. When you
choose OK, the query executes and you can see the results. The values you
entered are not saved in the data module.

11-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

Building multiple queries
To build multiple queries, choose Queries|Add, and the Data Modeler is
ready to begin building a new query. As you select columns in one or
more tables, the table names appear in place of the <new query> field.

Specifying a master-detail relationship
To set up a master-detail relationship between two queries,

1 Display the Link Queries dialog box in one of two ways:

• Choose Queries|Link.

• In the Queries panel, click-and-drag the mouse pointer from the
query you want to be the master query to the one you want to be the
detail query.

2 Select a query to be the master query in the Master Query list.

3 Select a query to be the detail query in the Detail Query list.

The Master Query and Detail Query fields are filled with suggested
fields. If they are not the ones you want, make the necessary changes.

4 Use the table to visually specify the columns that link the master and
detail queries together:

1 Click the first row under the master query column of the table to
display a drop-down list of all the specified columns in the master
table. Select the column you want the detail data to be grouped
under.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-17

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

2 Click the first row under the detail query column of the table to
display a drop-down list of all columns that are of the same data
type and size as the currently selected master column. Select the
appropriate column, thereby linking the master and the detail tables
together.

3 Choose OK.

When the Link Queries dialog box closes, an arrow is shown between the
two queries in the Queries panel showing the relationship between them.

For more information about master-detail relationships, see Chapter 9,
“Establishing a master-detail relationship.”

Saving your queries
To save the data module you built,

1 Choose File|Save in the Data Modeler and specify a name with a .java
extension.

2 Exit the Data Modeler.

The resulting file appears in your project.

3 Compile the data module.

11-18 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

Double-click the file in the project pane to open it in the content pane to
view the code the Data Modeler generated.

Generating database applications

From your compiled data module, JBuilder can generate two-tier
client-server applications with its Data Module Application wizard.

To display the Data Module Application wizard, select the Data Module
2-Tier Application wizard icon in the object gallery:

1 Choose File|New and select the Applications tab.

2 Double-click the Data Module Application icon.

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-19

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

3 Specify the data module file you want to generate an application from
in the dialog box that appears. You can select any data module that you
have or you can select one that was created by the Data Modeler.

4 Choose OK.

The wizard creates a database application for you. The wizard generates
several JAVA files and an HTML file.

• The files that make up the client are contained in a client2tier package:

• One or more UIBeans.java - Each bean implements columnar user
interface for a particular DataSet.

• ClientAboutBoxDialog.java - Implements the client Help About dialog.

• ClientFrame.java - The client application frame that is the container
for the default client user interface. Implements the application
menu bar.

• ClientResources.java - Contains client application strings for
localization.

• <datamodule>TwoTierApp.java - the application

• <datamodule>AppGenFileList.html - list of files generated with a brief
description of each.

Using a generated data module in your code
Once you’ve created a data module with the Data Modeler, you can use it
in applications that you write. Follow these steps:

1 Run the Use DataModule Wizard. In the source code of the frame for
your application, it adds a setModule() method that identifies the data
module. The setModule() method the wizard creates calls the frame’s
jbInit() method. The wizard also removes the call to jbInit() from the
frame’s constructor.

2 In the source code of your application file, call the frame’s setModule()
method, passing it the data module class.

For example, suppose you have used the Data Modeler to create a data
module called CountryDataModelModule. To access the logic stored in that
data module in an application you write, you must add a setModule()
method to your frame class.

To add the setModule() method and remove the jbInit() method from the
frame’s constructor,

1 Add the data module to the list of required libraries (in Project|Project
Properties dialog).

2 Choose Wizards|Use Data Module while the frame’s source code is
visible in the editor.

11-20 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

3 Specify the data module you want to use with the wizard.

4 Select the Application Sets The Instance By Calling setModule() option.

5 Choose OK.

The resulting code of the frame would look like this:

package com.borland.samples.dx.myapplication;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
//imports package where data module is
import com.borland.samples.dx.datamodule.*;

public class Frame1 extends JFrame {
 BorderLayout borderLayout1 = new BorderLayout();
 CountryDataModelModule countryDataModelModule1;

//Construct the frame without calling jbInit()
 public Frame1() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 }

 //Component initialization
 private void jbInit() throws Exception {
 this.getContentPane().setLayout(borderLayout1);
 this.setSize(new Dimension(400, 300));
 this.setTitle("Frame Title");
 }

 //Overridden so we can exit on System Close
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if(e.getID() == WindowEvent.WINDOW_CLOSING) {
 System.exit(0);
 }
 }
// The Use Data Module wizard added this code
 public void setModule(CountryDataModelModule countryDataModelModule1) {
 this.countryDataModelModule1 = countryDataModelModule1;
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Note that the frame’s jbInit() method is now called after the module is set
and not in the frame’s constructor.

Next you must call the new setModule() method from the main source code
of your application. In the constructor of the application, call setModule(),

U s i n g d a t a m o d u l e s t o s i m p l i f y d a t a a c c e s s 11-21

C r e a t i n g d a t a m o d u l e s u s i n g t h e D a t a M o d e l e r

passing it the data module class. The code of the main application would
look like this:

package com.borland.samples.dx.myapplication;

import javax.swing.UIManager;

public class Application1 {
 boolean packFrame = false;

 //Construct the application
 public Application1() {
 Frame1 frame = new Frame1();

 // This is the line of code that you add
 frame.setModule(new untitled3.CountryDataModelModule());

 //Validate frames that have preset sizes
 //Pack frames that have useful preferred size info, e.g. from their layout
 if (packFrame)
 frame.pack();
 else
 frame.validate();
 frame.setVisible(true);
 }

 //Main method
 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch(Exception e) {
 }
 new Application1();
 }
}

11-22 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P e r s i s t i n g a n d s t o r i n g d a t a i n a D a t a S t o r e 12-1

C h a p t e r

12
Chapter12Persisting and storing data

in a DataStore
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

JDataStore is a high-performance, small-footprint, all Java multifaceted
data storage solution. It is:

• An embedded relational database, with both JDBC and DataExpress
interfaces, that supports non-blocking transactional multi-user access
with crash recovery.

• An object store, for storing serialized objects, datasets, and other file
streams.

• A JavaBean component, that can be manipulated with visual bean
builder tools like JBuilder.

An all-Java visual DataStore Explorer helps you manage your datastores.

For the most complete and up-to-date information on using a DataStore,
refer to the JDataStore Developer’s Guide.

When to use a DataStore
When to use a DataStore:

• Organization. To organize an application’s StorageDataSets, files, and
serialized JavaBean/Object state into a single all Java, portable,
compact, high-performance, persistent storage.

• Asynchronous data replication. For mobile/offline computing models,
StorageDataSet has support for resolving/reconciling edited data
retrieved from an arbitrary data source (i.e. JDBC, Application Server,
SAP, BAAN, etc.).

12-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g t h e D a t a S t o r e E x p l o r e r

• Embedded applications. DataStore foot print is very small.
StorageDataSets also provide excellent data binding support for
data-aware UI components.

• Performance. To increase performance and save memory for a large
StorageDataSet. StorageDataSets using MemoryStore will have a small
performance edge over DataStore for small number of rows. DataStore
stores StorageDataSet data and indexes in an extremely compact format.
As the number of rows in a StorageDataSet increases, the StorageDataSet
using a DataStore provides better performance and requires much less
memory than a StorageDataSet using a MemoryStore.

For more information on using DataStores, refer to the JDataStore
Developer’s Guide.

Using the DataStore Explorer
Using the DataStore Explorer, you can

• Examine the contents of a DataStore. The store’s directory is shown in a
tree control, with each data set and its indexes grouped together. When
a data stream is selected in the tree, its contents are displayed
(assuming it’s a file type like text file, .gif, or data set, for which the
Explorer has a viewer).

• Perform many store operations without writing code. You can create a
new DataStore, import delimited text files into data sets, import files
into file streams, delete indexes, delete data sets or other data streams,
and verify the integrity of the DataStore.

• Manage queries that provide data into data sets in the store, edit the
data sets, and save changes back to server tables.

Use the Tools|DataStore Explorer menu command to launch the
DataStore Explorer.

P e r s i s t i n g a n d s t o r i n g d a t a i n a D a t a S t o r e 12-3

D a t a S t o r e o p e r a t i o n s

DataStore operations
To create a new DataStore,

1 Open the DataStore Explorer by selecting Tools|DataStore Explorer.

2 Select File|New or click the New DataStore button.

3 Enter a name for the new store and choose OK. The store is created and
opened in the Explorer.

To import a text file into a data set,

1 Select Tools|Import|Text Into Table.

2 Supply the input text file and the store name of the data set to be
created

The contents of the text file must be in the delimited format that
JBuilder exports to, and there must be a .schema file with the same
name in the directory to define the structure of the target data set (to
create a .schema file, see “Exporting data” on page 10-5). The default
store name is the input file name, including the extension. Since this
operation creates a data set, not a file stream, you’ll probably want to
omit the extension from the store name.

3 Choose OK.

To import a file into a file stream,

1 Select Tools|Import|File.

2 Supply an input file name and the store name of the data set to be
created, and choose OK.

To verify the open DataStore,

1 Select Tools|Verify DataStore or click the Verify DataStore button.

The entire store is verified and the results are displayed in the Verifier
Log window. After you’ve closed the log window, you view it again by
selecting View|Verifier Log.

For more information on using the DataStore Explorer, refer to the
JDataStore Developer’s Guide.

12-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-1

C h a p t e r

13
Chapter13Filtering, sorting, and

locating data
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

Once you’ve completed the providing phase of your application and have
the data in an appropriate DataExpress package DataSet component,
you’re ready to work on the core functionality of your application and its
user interface. This chapter demonstrates the typical database application
features of filtering, sorting, and locating data.

A design feature of the DataExpress package is that the manipulation of
data is independent of how the data was obtained. Regardless of which
type of DataSet component you use to obtain the data, you manipulate it
and connect it to controls in exactly the same way. Most of the examples in
this chapter use the QueryDataSet component, but you can replace this with
the TableDataSet or any StorageDataSet subclass without having to change
code in the main body of your application.

Each sample is created using the JBuilder AppBrowser and design tools.
Wherever possible, we’ll use these tools to generate source Java code.
Where necessary, we’ll show you what code to modify in order to have
your application perform a particular task.

These tutorials assume that you are comfortable using the JBuilder
environment and do not provide detailed steps on how to use the user
interface. If you’re not yet comfortable with JBuilder, refer to the
“Tutorial: An introduction to JBuilder database applications” on page 5-4
or to the online help topic “Designing a user interface.”

All of the following examples and tutorials involve accessing SQL data
stored in a local database. These examples use the sample files in the
downloadable Samples Pack, using the local JDataStore JDBC driver. For
instructions on how to setup and configure JBuilder to use the sample
JDataStore driver, see “Deploying database applications” on page 3-8.

13-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

R e t r i e v i n g d a t a f o r t h e t u t o r i a l s

We encourage you to use the samples as guides when adding these
functions to your application. Finished projects and Java source files for
many of these tutorials, with comments in the source file where
appropriate, are provided. (If you downloaded JBuilder, you also need to
download the Samples Pack.) All files referenced by these examples are
found in the JBuilder samples directory. If you experience problems
running the sample applications, see “JBuilder sample files” on page 3-2
for information critical to this process.

Note Some of the samples run only with JBuilder Enterprise.

To create a database application, you first need to connect to a database
and provide data to a DataSet. “Retrieving data for the tutorials” on
page 13-2 sets up a query that will be used for each of the following
database tutorials. The following list of additional database functionality
options (filter, sort, locate data) can be used in any combination, for
example, you could choose to temporarily hide all employees whose last
names start with letters between “M” and “Z”. You could sort the
employees that are visible by their first names.

• Filtering data. Filtering temporarily hides rows in a DataSet.

• Sorting data. Sorting changes the order of a filtered or unfiltered
DataSet.

• Locating data. Locating positions the cursor within the filtered or
unfiltered DataSet.

Retrieving data for the tutorials
This topic provides the steps for setting up a basic database application
that can be used with the tutorials in this chapter. The query that will be
used in these tutorials is: SELECT * FROM EMPLOYEE

This SQL statement selects all columns from a table named EMPLOYEE,
included in the sample JDataStore.

To set up an application for use with the tutorials,

1 Close all open projects (select File|Close Project).

2 Select File|New Project.

3 Enter a name and location for the project in the Project Wizard. Click
Finish.

4 Select File|New from the menu. Double-click the Application icon.

5 Specify the package name and class name in the Application Wizard.
Click Finish.

6 Select the Design tab to activate the UI designer.

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-3

R e t r i e v i n g d a t a f o r t h e t u t o r i a l s

7 Click the Database component on the Data Express tab of the component
palette, then click in the component tree or the UI designer to add the
component to the application.

Open the connection property editor for the Database component by
selecting, then clicking the connection property ellipsis in the Inspector.
Set the connection properties to the JDataStore sample employee table
as follows. The Connection URL points to a specific installation
location. If you have installed JBuilder to a different directory, point to
the correct location for your installation.

The connection dialog includes a Test Connection button. Click this
button to check that the connection properties have been correctly set.
Results of the connection attempt are displayed in the status area.
When the connection is successful, click OK. If the connection is not
successful, make sure you have followed all the steps for Chapter 4,
“Connecting to a database.”

8 Add a QueryDataSet component to the designer by clicking on the
QueryDataSet component on the Data Express tab and then clicking in
the component tree or the UI Designer.

Select the query property of the QueryDataSet component in the Inspector,
click its ellipsis to open the QueryDescriptor dialog, and set the following
properties:

Click Test Query to ensure that the query is runnable. When the status
area indicates Success, click OK to close the dialog.

9 Add a DBDisposeMonitor component from the More dbSwing tab. The
DBDisposeMonitor will close the DataStore when the window is closed.

10 Set the dataAwareComponentContainer property for the DBDisposeMonitor to
this.

Property name Value

Driver com.borland.datastore.jdbc.DataStoreDriver

URL Browse to your copy of
/jbuilder/samples/JDataStore/datastores/employee.jds

Username Enter your name

Password not required

Property name Value

Database database1

SQL Statement SELECT * FROM EMPLOYEE

13-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

R e t r i e v i n g d a t a f o r t h e t u t o r i a l s

To view the data in your application, add the following UI components
and bind them to the data set as follows:

1 Select contentPane(BorderLayout) in the component tree and set its
layout property to null.

2 Drop a JdbNavToolBarinto the area at the top of the panel in the UI
designer. jdbNavToolBar1 automatically attaches itself to whichever
DataSet has focus, so you do not need to set its dataSet property.

3 Drop a JdbStatusLabel into the area at the bottom of the panel in the UI
designer. jdbStatusLabel1 automatically attaches itself to whichever
DataSet has focus, so you do not need to set its dataSet property.

4 Add a TableScrollPane from the dbSwing tab to the center of the panel in
the UI designer.

5 Drop a JdbTable into the center of tableScrollPane1and set its dataSet
property to queryDataSet1.

You’ll notice that the designer displays live data at this point.

6 Select Run|Run Project to run the application and browse the data set.

The EMPLOYEE data set contains 42 records and 11 fields. In the status
label for this application, you will see how many records are displaying.
When the application is first run, the status label will read “Record 1 of
42”. Some of the tutorials remove rows from a view. The status label will
display the number of rows retrieved into the data set for each
application.

For more information on retrieving data for your application, see
Chapter 5, “Retrieving data from a data source.”

The running application should look like this:

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-5

F i l t e r i n g d a t a

Filtering data
Filtering temporarily hides rows in a data set, letting you select, view, and
work with a subset of rows in a data set. For example, you may be
interested in viewing all orders for a customer, all customers outside the
U.S., or all orders that were not shipped within two days. Instead of
running a new query each time your criteria change, you can use a filter to
show a new view.

In JBuilder, you provide filter code that the data set calls via an event for
each row of data to determine whether or not to include each row in the
current view. Each time your method is called, it should examine the row
passed in, and then indicate whether the row should be included in the
view or not. It indicates this by calling add() or ignore() methods of a
passed-in RowFilterResponse object. You hook this code up to the filterRow
event of a data set using the Events page of the Inspector. When you open
the data set, or let it be opened implicitly by running a frame with a
control bound to the data set, the filter will be implemented. In this
example, we use UI components to let the user request a new filter on the
fly.

A filter on a data set is a mechanism for restricting which rows in the data
set are visible. The underlying data set is not changed, only the current
view of the data is changed and this view is transient. An application can
change which records are in the current view “on the fly”, in response to a
request from the user (such as is shown in the following example), or
according to the application’s logic (for example, displaying all rows to be
deleted prior to saving changes to confirm or cancel the operation). When
you work with a filtered view of the data and post an edit that is not
within the filter specifications, the row disappears from the view, but is
still in the data set.

You can work with multiple views of the same data set at the same time,
using a DataSetView. For more information on working with multiple views
of the same data set, see “Presenting an alternate view of the data” on
page 14-22.

Filtering is sometimes confused with sorting and locating.

• Filtering temporarily hides rows in a DataSet.

• Sorting changes the order of a filtered or unfiltered DataSet. For more
information on sorting data, see “Sorting data” on page 13-9.

• Locating positions the cursor within the filtered or unfiltered DataSet.
For more information on locating data, see “Locating data” on
page 13-14.

13-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

F i l t e r i n g d a t a

Tutorial: Adding and removing filters

This tutorial shows how to use a data set’s RowFilterListener to view only
rows that meet the filter criteria. In this example, we create a JdbTextField
that lets the user specify the column to filter. Then we create another
JdbTextField that lets the user specify the value that must be in that column
in order for the record to be displayed in the view. We add a JButton to let
the user determine when to apply the filter criteria and show only those
rows whose specified column contains exactly the specified value.

In this tutorial, we use a QueryDataSet component connected to a Database
component to fetch data, but filtering can be done on any DataSet
component.

The finished example is available as a completed project in the
/samples/DataExpress/FilterRows subdirectory of your JBuilder
installation.

To create this application:

1 Create a new application by following “Retrieving data for the
tutorials” on page 13-2. This step enables you to connect to a database,
read data from a table, and view and edit that data in a data-aware
component.

2 Click the Design tab.

3 Add two JdbTextField components from the dbSwing tab and a JButton
component from the Swing tab. The JdbTextField components enable
you to enter a field and a value to filter on. The JButton component
executes the filtering mechanism.

4 Define the name of the column to be filtered and its formatter. To do
this, select the Source tab and add this import statement to the existing
import statements:

import com.borland.dx.text.VariantFormatter;

5 Add these variable definitions to the existing variable definitions in the
class definition:

Variant v = new Variant();
String columnName = "Last_Name";
String columnValue = "Young";
VariantFormatter formatter;

6 Specify the filter mechanism. You restrict the rows included in a view
by adding a RowFilterListener and using it to define which rows should
be shown. The default action in a RowFilterListener is to exclude the
row. Your code should call the RowFilterResponse add() method for every
row that should be included in the view. Note that in this example we

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-7

F i l t e r i n g d a t a

are checking to see if the columnName and columnValue fields are blank. If
either is blank, all rows are added to the current view.

To create the RowFilterListener as an event adapter using the visual
design tools,

1 Select the Design tab.

2 Select the queryDataSet1 in the component tree.

3 Select the Events tab of the Inspector.

4 Select the filterRow event.

5 Double-click the filterRow value box.

A RowFilterListener is automatically generated as an inner class. It
calls a new method in your class, called queryDataSet1_filterRow
method.

6 Add the filtering code to the queryDataSet1_filterRow event. You can
copy the code from the online help by selecting the code and
pressing Ctrl+C or selecting Edit|Copy from the Help Viewer menu.

void queryDataSet1_filterRow(ReadRow row, RowFilterResponse
response) {
try {
if (formatter == null || columnName == null ||

columnValue == null || columnName.length() == 0 ||
columnValue.length() == 0)
// user set field(s) are blank, so add all rows
response.add();

else {
row.getVariant(columnName, v);
// fetches row's value of column
// formats this to a string
String s = formatter.format(v);
// true means show this row
if (columnValue.equals(s))

response.add();
else response.ignore();

}
}
catch (Exception e) {
System.err.println("Filter example failed");
}

}

7 Override the actionPerformed event for the JButton to retrigger the actual
filtering of data. To do this,

1 Select the Design tab.

2 Select the JButton in the component tree.

3 Click the Events tab on the Inspector.

13-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

F i l t e r i n g d a t a

4 Select the actionPerformed event, and double-click the value box for
its event.

The Source tab displays the stub for the jButton1_actionPerformed
method. The following code uses the adapter class to do the actual
filtering of data by detaching and re-attaching the rowFilterListener
event adapter that was generated in the previous step.

5 Add this code to the generated stub.

void jButton1_actionPerformed(ActionEvent e) {

try {

// Get new values for variables that the filter uses.
// Then force the data set to be refiltered.

columnName = jdbTextField1.getText();
columnValue = jdbTextField2.getText();
Column column = queryDataSet1.getColumn(columnName);
formatter = column.getFormatter();

// Trigger a recalc of the filters

queryDataSet1.refilter();

// The table should now repaint only those rows matching
// these criteria

}
catch (Exception ex) {

System.err.println("Filter example failed");
}

}

8 Compile and run the application.

The running application looks like this:

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-9

S o r t i n g d a t a

To test this application,

Enter the name of the column you wish to filter (for example, Last_Name)
in the first JdbTextField.

1 Enter the value you wish to filter for in the second JdbTextField (for
example, Young).

2 Click the JButton.

Leaving either the column name or the value blank removes any
filtering and allows all values to be viewed.

Sorting data
Sorting a data set defines an index that allows the data to be displayed in a
sorted order without actually reordering the rows in the table on the
server.

Data sets can be sorted on one or more columns. When a sort is defined on
more than one column, the dataset is sorted as follows:

• First on the primary column.

• The secondary column defined in the sort breaks any ties when
columns defined in the primary sort are not unique.

• Subsequent columns defined in the sort continue to break ties.

• If there are still ties after the last column defined in the sort, the
columns will display in the order they exist on the table in the server.

You can sort the data in any DataSet subclass, including the QueryDataSet,
ProcedureDataSet, TableDataSet, and DataSetView components. When sorting
data in JBuilder, note that:

• Case sensitivity applies only when sorting data of type String .

• Case sensitivity applies to all String columns in a multi-column sort.

• Sort directions (ascending/descending) are set on a column-by-column
basis.

• Null values sort to the top in a descending sort, to the bottom in an
ascending sort.

Sorting and indexing data are closely related. See “Understanding sorting
and indexing” on page 13-12 for further discussion of indexes.

Sorting data in a JdbTable

If your application includes a JdbTable that is associated with a DataSet,
you can sort on a single column in the table by clicking the column header

13-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S o r t i n g d a t a

in the running application. Click again to toggle from ascending to
descending order.

When sorting data in this way, you can only sort on a single column.
Clicking a different column header replaces the current sort with a new
sort on the column just selected.

Sorting data using the JBuilder visual design tools

If you need your application to sort in a specified order, the JBuilder
visual design tools allow you to quickly set these properties. The DataSet
sort property provides an easy way to

• View the columns that currently control sort order.

• Select from among the sortable columns in the DataSet.

• Add and remove selected columns to and from the sort specification.

• Set the case-sensitivity of the sort.

• Set the sort order to ascending or descending on a column-by-column
basis.

• Set unique sort constraints so that only columns with unique key values
can be added or updated in a DataSet.

• Create a re-usable index for a table.

This example describes how to sort a data set in ascending order by last
name. To set sort properties using the JBuilder visual design tools:

1 Open or create the project from “Retrieving data for the tutorials” on
page 13-2.

2 Click the Design tab. Select the QueryDataSet in the content pane.

3 In the Inspector, select, then double-click the area beside the sort
property. This displays the sort property editor.

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-11

S o r t i n g d a t a

4 Specify values for options that affect the sort order of the data. In this
case, select the LAST_NAME field from the list of Available Columns,
click Add To Sort.

5 If you selected the wrong column, click the Remove From Sort button,
and redo the previous step.

The dialog will look like this:

6 Click the OK button.

The property values you specify in this dialog are stored in a
SortDescriptor object.

7 Select Run|Run Project to compile and run the application. It will look
like this:

13-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S o r t i n g d a t a

Understanding sorting and indexing
There are two options on the Sort dialog that benefit from further
discussion: Unique and Index Name. Sorting and indexing are closely
related. The following describes the unique option and named indexes in
more detail.

• Unique

Check the Unique option to create a unique index, which enables a
“constraint” on the data in the StorageDataSet - only rows with unique
values for the columns defined as sortKeys in the SortDescriptor can be
added or updated in a DataSet.

What is a unique index?

Unique is a constraint on the data set, not just on the index. If you
define a unique index on a column, you are asserting that no two
rows in the data set have the same value in that column. If there are
two or more rows in the data set that have the same value in the
unique column when the index is first created, any duplicate rows are
moved to another “duplicates” data set.

How this works: when the unique sort property is applied for the
first time, rows that violate the unique constraint are copied into a
separate DataSet. You can access this DataSet by calling the
StorageDataSet.getDuplicates() method. The duplicates DataSet can be
deleted by calling the StorageDataSet.deleteDuplicates() method.

You can have one or more unique sort property settings for a
StorageDataSet at one time. If a duplicates DataSet exists from a
previous unique sort property setting, additional unique sort
property settings cannot be made until the earlier duplicates have
been deleted. This is done to protect you from eliminating valuable
rows due to an erroneous unique sort property setting.

• If a unique index is sorted on more than one column, the constraint
applies to all the columns taken together: two rows can have the
same value in a single sort column, but no row can have the same
value as another row in every sort column.

• The unique option is useful when you’re querying data from a server
table that has a unique index. Before the user begins editing the data
set, you can define a unique index on the columns that are indexed
on the server knowing that there will not be any duplicates. This
ensures that the user cannot create rows that would be rejected as
duplicates when the changes are saved back to the server.

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-13

S o r t i n g d a t a

• Index Name

Enter a name in this field to create a named index. This is the
user-specified name to be associated with the sort specification (index)
being defined in the dialog.

What is a named index?

• The named index implements the sort orders (that is, indexes), and
whether or not the unique constraint is enforced, under an
easy-to-retrieve setting, even if you stop viewing data in that order.
Maintained means that each index is updated to reflect insertions,
deletions, and edits to its sort column or columns. For example, if
you define a unique sort on the CustNo column of your Customers
data set, then decide you want to see customers by zip code and
define a sort to show that, you still can’t enter a new customer with a
duplicate CustNo value.

• The intent of the index name is to let you revert to a previously
defined sort. The index has been “maintained” (kept up-to-date), so
that it can be re-used. And in fact, if you set a data set’s sort property
to a new sortDescriptor with exactly the same parameters as an
existing sort, the existing sort is used.

• To view a data set in the order defined by an existing named index,
set its sort property using the sortDescriptor constructor that takes
just an index name.

Sorting data in code

You can enter the code manually or use JBuilder design tools to generate
the code for you to instantiate a SortDescriptor. The code generated
automatically by the JBuilder design tools looks like the following:

queryDataSet1.setSort(new com.borland.dx.dataset.SortDescriptor("",
 new String[] {"LAST_NAME", "FIRST_NAME", "EMP_NO"}, new boolean[]
 {false, false, false, }, true, false, null));

In this code segment, the sortDescriptor is instantiated with sort column of
the last and first names fields (LAST_NAME and FIRST_NAME), then the
employee number field (EMP_NO) is used as a tie-breaker in the event
two employees have the same name. The sort is case insensitive, and in
ascending order.

To revert to a view of unsorted data, close the data set, and set the setSort
method to null, as follows. The data will then be displayed in the order in
which it was added to the table.

queryDataSet1.setSort(null);

13-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

L o c a t i n g d a t a

Locating data
A basic need of data applications is to find specified data. This topic
discusses the following two types of locates:

• An interactive locate using a JdbNavField, where the user can enter
values to locate when the application is running.

• A locate where the search values are programmatically set.

Locating data with a JdbNavField
The dbSwing library includes a JdbNavField component that provides
locate functionality in a user-interface control. The JdbNavField includes an
incremental search feature for String type columns. Its columnName property
specifies the column in which to perform the locate. If not set, the locate is
performed on the last column visited in the JdbTable.

If you include a JdbStatusLabel component in your application, JdbNavField
prompts and messages are displayed on the status label.

The /samples/DataExpress/LocatingData subdirectory of JBuilder
includes a finished example of an application that uses the JdbNavField
under the project name LocatingData.jpr. This sample shows how to set a
particular column for the locate operation as well as using a JdbComboBox
component to enable the user to select the column in which to locate the
value. The completed application looks like this:

To create this application,

1 Create a new application by following “Retrieving data for the tutorials”
on page 13-2. This step enables you to connect to a database, read data
from a table, and view and edit that data in a data-aware component.

Check the screen shot of the running application (shown above) for the
approximate positioning of components.

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-15

L o c a t i n g d a t a

2 Add a JdbNavField from the More dbSwing tab of the component palette
to the UI designer. Set its dataSet property to queryDataSet1.

3 Add a JdbComboBox from the dbSwing tab of the component palette to the
UI designer.

4 Set the items property for jdbComboBox1 to the column name values
EMP_NO, FIRST_NAME, and LAST_NAME.

5 Select the Events tab of the Inspector. Select the itemStateChanged() event
for jdbComboBox1, and double-click its value field. A stub for the
itemStateChanged() event is added to the source, and the cursor is
positioned for insertion of the following code, which allows the user to
specify the column in which to locate data.

void jdbComboBox1_itemStateChanged(ItemEvent e) {
jdbNavField1.setColumnName(jdbComboBox1.getSelectedItem().toString());
jdbNavField1.requestFocus();
}

This code tests for the a change in the JdbComboBox. If it determines that a
different column value is selected, the columnName property for the
JdbNavField is set to the column named in the JdbComboBox. This instructs
the JdbNavField to perform locates in the specified Column. Focus is then
shifted to the JdbNavField so that you can enter the value to search for.

6 Add a JdbTextArea component from the dbSwing tab. Place it next to the
JdbComboBox component in the UI designer. Set its text property so that
the user knows to select a column on which to locate data, for example,

Select the column in which to search. Then type the value you want to
locate. Look at messages on the status label for search instruction.

Alternatively, if you want to locate only in a particular Column, you
could set the JdbNavField component’s columnName property to the DataSet
column on which you want to locate data, for example, LAST_NAME.

7 Add a JdbLabel from the dbSwing tab. Place it next to jdbNavField1. Set
its text property to: Value to locate.

Note See the screen shot of the running application earlier in this section for
additional instructional text.

8 Run the application.

When you run the application, you’ll notice the following behavior:

• Select the column name on which you want to perform the locate in the
JdbComboBox.

• Start typing the value to locate in the JdbNavField. If you’re locating in a
String column, as you type, notice that the JdbNavField does an
incremental search on each key pressed. For all other data types, press
Enter to perform the locate.

13-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

L o c a t i n g d a t a

• Press the UpArrow or DownArrow keys to perform a “locate prior” or
“locate next” respectively.

• The status label updates to reflect the current status of the application,
for example,

• Initially, the status area displays “Enter a value and press enter to
begin search”.

• If a value is not found in the table, the status area displays “Could
not find a matching column value”.

• When a matching value is found, the status area displays “Found
matching column value. Press up/down to find other matches”.

Locating data programmatically

This section explores the basics of locating data programmatically as well
as conditions which affect the locate operation.

When programmatically locating data:

1 Instantiate a DataRow based on the DataSet you want to search. If you
don’t want to search on all columns in the DataSet, create a “scoped”
DataRow (a DataRow that contains just the columns for which you want to
specify locate values). (See “Locating data using a DataRow” on
page 13-17.)

2 Assign the values to locate in the appropriate columns of the DataRow.

3 Call the locate(ReadRow, int) method, specifying the location options
you want as the int parameter. Test the return value to determine if the
locate succeeded or failed.

4 To find additional occurrences, call locate() again, specifying a
different locate option, for example, Locate.NEXT or Locate.LAST. See
“Locate class variables” in the online help for information on all the
Locate options.

The core locate functionality uses the locate(ReadRow, int) method. The
first parameter, ReadRow, is of an abstract class type. Normally you use its
(instantiable) subclass DataRow class. The second parameter represents the
locate option and is defined in Locate variables. The Locate class variables
represent options that let you control where the search starts from and
how it searches, for example with or without case sensitivity. (For more
information on locate options, see “Working with locate options” on
page 13-17.) If a match is found, the current row position moves to that
row. All data-aware components that are connected to the same located
DataSet navigate together to the located row.

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-17

L o c a t i n g d a t a

The Locate() method searches within the current view of the DataSet. This
means that rows excluded from display by a RowFilterListener are not
included in the search.

The view of the DataSet can be sorted or unsorted; if it is sorted, the
locate() method finds matching rows according to the sort sequence.

To locate a null value in a given column of a DataSet, include the column in
the DataRow parameter of the locate() method but do not assign it a value.

Tip If the locate() method fails to find a match when you think it should
succeed, check for null values in some columns; remember that all
columns of the DataRow are included in the search. To prevent this, use a
“scoped” DataRow containing only the desired columns.

Locating data using a DataRow

A DataRow is similar to a DataSet in that it contains multiple Column
components. However, it stores only one row of data. You specify the
values to locate for in the DataRow.

When the DataRow is created based on the same located DataSet, the DataRow
contains the same column names and data types and column order as the
DataSet it is based on. All columns of the DataRow are included in the locate
operation by default; to exclude columns from the locate, create a
“scoped” DataRow that contains only specified columns from the DataSet.
You create a “scoped” DataRow using either of the following DataRow
constructors:

• DataRow(DataSet, String)
• DataRow(DataSet, String[])

Both the DataRow and the DataSet are subclasses of ReadWriteRow. Both inherit
the same methods for manipulation of its contents, for example,
getInt(String), and setInt(String, int). You can therefore work with DataRow
objects using many of the same methods as the DataSet.

Working with locate options

You control the locate operation using locate options. These are constants
defined in the com.borland.dx.dataset.Locate class. You can combine locate
options using the bitwise OR operator; several of the most useful
combinations are already defined as constants. Four of the locate options
(FIRST, NEXT, LAST, and PRIOR) determine how the rows of the DataSet are
searched. The CASE_INSENSITIVE and PARTIAL) options define what is
considered a matching value. The FAST constant affects the preparation of
the locate operation.

13-18 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

L o c a t i n g d a t a

You must specify where the locate starts searching and which direction it
moves through the rows of the DataSet. Choose one of the following:

• FIRST starts at the first row, regardless of your current position, and
moves down.

• LAST starts at the last row and moves up.

• NEXT starts at your current position and moves down.

• PRIOR starts at your current position and moves up.

If one of these constants is not specified for a locate operation, a
DataSetException of NEED_LOCATE_START_OPTION is thrown.

To find all matching rows in a DataSet, call the locate() method once with
the locate option of FIRST. If a match is found, re-execute the locate using
the NEXT_FAST option, calling the method with this locate option repeatedly
until it returns false. The FAST locate option specifies that the locate values
have not changed, so they don’t need to be read from the DataRow again. To
find all matching rows starting at the bottom of the view, use the options
LAST and PRIOR_FAST instead.

The CASE_INSENSITIVE option specifies that string values are considered to
match even if they differ in case. Specifying whether a locate operation is
CASE_INSENSITIVE or not is optional and only has meaning when locating in
String columns; it is ignored for other data types. If this option is used in a
multi-column locate, the case sensitivity applies to all String columns
involved in the search.

The PARTIAL option specifies that a row value is considered to match the
corresponding locate value if it starts with the first characters of the locate
value. For example, you might use a locate value of “M” to find all last
names that start with “M”. As with the CASE_INSENSITIVE option, PARTIAL is
optional and only has meaning when searching String columns.

Multi-column locates that use PARTIAL differ from other multi-column
locates in that the order of the locate columns makes a difference. The
constructor for a scoped, multi-column DataRow takes an array of column
names. These names need not be listed in the order that they appear in the
DataSet. The PARTIAL option applies only to the last column specified,
therefore, control over which column appears last in the array is
important.

For a multi-column locate operation using the PARTIAL option to succeed, a
row of the DataSet must match corresponding values for all columns of the
DataRow except the last column of the DataRow. If the last column starts with
the locate value, the method succeeds. If not, the method fails. If the last
column in the DataRow is not a String column, the locate() method throws a
DataSetException of PARTIAL_SEARCH_FOR_STRING.

F i l t e r i n g , s o r t i n g , a n d l o c a t i n g d a t a 13-19

L o c a t i n g d a t a

Locates that handle any data type

Data stored in DataExpress components are stored in Variant objects.
When data is displayed, a String representation of the variant is used. To
write code that performs a generalized locate that handles columns of any
data type, use one of the setVariant() methods and one of the getVariant()
methods.

For example, you might want to write a generalized locate routine that
accepts a value and looks for the row in the DataSet that contains that
value. The same block of code can be made to work for any data type
because the data stays a variant. To display the data, use the appropriate
formatter class or create your own custom formatter.

Column order in the DataRow and DataSet

While a Column from the DataSet can only appear once in the DataRow, the
column order may be different in a scoped DataRow than in the DataSet. For
some locate operations, column order can make a difference. For example,
this can affect multi-column locates when the PARTIAL option is used. For
more information on this, see the paragraph on multi-column locates with
the PARTIAL option on page 13-18.

13-20 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-1

C h a p t e r

14
Chapter14Adding functionality to

database applications
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

Once you’ve completed the providing phase of your application and have
the data in an appropriate DataExpress package DataSet component,
you’re ready to work on the core functionality of your application and its
user interface. Chapter 13, “Filtering, sorting, and locating data”
introduced sorting, filtering, and locating data in a data set. This chapter
demonstrates other typical database applications.

A design feature of the DataExpress package is that the manipulation of
data is independent of how the data was obtained. Regardless of which
type of DataSet component you use to obtain the data, you manipulate it
and connect it to controls in exactly the same way. Most of the examples in
this chapter use the QueryDataSet component, but you can replace this with
the TableDataSet or any StorageDataSet subclass without having to change
code in the main body of your application.

Each sample is created using the JBuilder AppBrowser and design tools.
Wherever possible, we’ll use these tools to generate Java source code.
Where necessary, we’ll show you what code to modify, where, and how,
to have your application perform a particular task.

These tutorials assume that you are comfortable using the JBuilder
environment and do not provide detailed steps on how to use the user
interface. If you’re not yet comfortable with JBuilder, refer to the
“Tutorial: An introduction to JBuilder database applications” on page 5-4
or to the online help topic “Designing a user interface.”

All of the following examples and tutorials involve accessing SQL data
stored in a local JDataStore. Finished projects and Java source files are
provided in the JBuilder samples directory (/samples/DataExpress) for
many of these tutorials, with comments in the source file where

14-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g l o o k u p s

appropriate. We encourage you to use the samples as guides when adding
these functions to your application.

To create a database application, you first need to connect to a database
and provide data to a DataSet. “Retrieving data for the tutorials” on
page 13-2 sets up a query that can be used for each of the following
database tutorials.

• Creating lookups, includes information on creating a lookup using a
picklist.

• Using calculated columns

• Aggregating data with calculated fields

• Adding an Edit or Display Pattern for data formatting

• Presenting an alternate view of the data

Creating lookups
A Column can derive its values from

• Data in a database column.

• As a result of being imported from a text file.

• As a result of a calculation, which can include calculated columns,
aggregated data, data looked up in another data set, or data that is
chosen via a picklist.

This topic covers providing values to a column using a picklist to enter a
new value to a column, and it also covers creating a lookup that will
display values from another column.

• “Tutorial: Data entry with a picklist” on page 14-3 discusses using a
picklist to lookup a value in a column of another data set for data entry.

This type of lookup displays a list of choices in a drop-down list. The
choices that populate the list come the unique values of a column of
another data set. The tutorial gives the steps for looking up a value in a
picklist for data entry purposes, in this case for selecting a country for a
customer or employee. In this example, the pickList property of a
column allows you to define which column of which data set will used
provide values for the picklist. The choices will be available for data
entry in a visual component, such as a table, when the application is
running.

There are many other things you can do with a picklist. For more ideas,
see the pick list sample in the dbSwing samples directory.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-3

C r e a t i n g l o o k u p s

• “Tutorial: Creating a lookup using a calculated column” on page 14-5
discusses using a lookup field to display values from a column of
another data set.

This type of lookup retrieves values from a specified table based on
criteria you specify and displays it as part of the current table. In order
to create a calculated column, you need to create a new Column object in
the StorageDataSet, set its calcType appropriately, and code the calcFields
event handler. The lookup values are only visible in the running
application. Lookup columns can be defined and viewed in JBuilder,
but JBuilder-defined lookup columns are not resolved to or provided
from its data source, although they can be exported to a text file.

An example of looking up a field in a different table for display
purposes is looking up a part number to display a part description for
display in an invoice line item or looking up a zip code for a specified
city and state.

The lookup() method uses specified search criteria to search for the first
row matching the criteria. When the row is located, the data is returned
from that row, but the cursor is not moved to that row. The locate()
method is a method that is similar to lookup(), but actually moves the
cursor to the first row that matches the specified set of criteria. For
more information on the locate() method, see “Locating data” on
page 13-14.

The lookup() method can use a scoped DataRow (a DataRow with less
columns than the DataSet) to hold the values to search for and options
defined in the Locate class to control searching. This scoped DataRow will
contain only the columns that are being looked up and the data that
matches the current search criteria, if any. With lookup, you generally
look up values in another table, so you will need to instantiate a
connection to that table in your application.

Tutorial: Data entry with a picklist

This tutorial shows how to create a picklist that can be used to set the
value of the JOB_COUNTRY column from the list of countries available in
the COUNTRY table. When the user selects a country from the picklist,
that selection is automatically written into the current field of the table.
This project can be viewed as a completed application by running the
sample project Picklist.jpr, located in the /samples/DataExpress/Picklist
subdirectory of your JBuilder installation.

This application is primarily created in the designer.

1 Create a new application by following “Retrieving data for the
tutorials” on page 13-2. This step enables you to connect to a database,
read data from a table, and view and edit that data in a data-aware
component.

14-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g l o o k u p s

2 Add another QueryDataSet to the application. This will form the query to
populate the list of choices. Set the query property of queryDataSet2 as
follows:

Click Test Query. When successful, click OK.

3 Click the expand icon to the left of the queryDataSet1 component in the
component tree to expose all of the columns. Select JOB_COUNTRY.

4 Open the pickList property editor in the Inspector to bring up the
pickListDescriptor. Set the pickList properties as follows:

Click OK.

5 Click the Source tab. Enter the following code after the call to jbInit().
This opens queryDataSet2, which is attached to the
EMPLOYEE_PROJECT table. Normally, a visual, data-aware
component such as JdbTable would open the data set for you
automatically, but in this case, there is no visual component attached to
this data set, so it must be opened explicitly.

queryDataSet2.open();

6 Run the application by selecting Run|Run Project.

When the application is running, you can insert a row into the table, and,
when it you enter a value for the JOB_COUNTRY field, you can select it
from the drop-down pick list. The country you select is automatically
inserted into the JOB_COUNTRY field in the EMPLOYEE data set.

Removing a picklist field
To remove a picklist,

1 Select the column that contains the picklist in the component tree.

2 Open the pickListDescriptor dialog by clicking in the pickList property
in the Inspector.

3 Set the PickList/Lookup DataSet field to <none>.

For this option Make this choice

Database database1

SQL Statement select COUNTRY from COUNTRY

Property name Value

Picklist/Lookup DataSet queryDataSet2

queryDataSet2 COUNTRY

Data Type STRING

Display Column? checked

queryDataSet1 JOB_COUNTRY

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-5

C r e a t i n g l o o k u p s

Tutorial: Creating a lookup using a calculated column

This tutorial shows how to use a calculated column to search and retrieve
an employee name (from EMPLOYEE) for a given employee number in
EMPLOYEE_PROJECT. This type of lookup field is for display purposes
only. The data this column contains at run time is not retained because it
already exists elsewhere in your database. The physical structure of the
table and data underlying the data set is not changed in any way. The
lookup column will be read-only by default. This project can be viewed as
a completed application by running the sample project Lookup.jpr,
located in the /samples/DataExpress/Lookup subdirectory of your
JBuilder installation.

For more information on using the calcFields event to define a calculated
column, refer to “Using calculated columns” on page 14-7.

1 Create a new application by following “Retrieving data for the
tutorials” on page 13-2. This step enables you to connect to a database,
read data from a table, and view and edit that data in a data-aware
component.

2 Add another QueryDataSet to the application. This will provide data to
populate the base table where we later add columns to perform
lookups to other tables. Set the query property of queryDataSet2 as
follows:

Click Test Query. When successful, click OK.

3 Select the JdbTable in the content pane, and change its dataSet property
to queryDataSet2. This will enable you to view data in the designer and
in the running application.

4 Click the expand icon to the left of the queryDataSet2 in the component
tree to expose all of the columns. Select <new column> and set the
following properties in the Inspector for the new column:

The new column will display in the list of columns and in the table
control. You can manually edit the setColumns() method to change the

For this option Make this choice

Database database1

SQL Statement select * from EMPLOYEE_PROJECT

Property name Value

calcType CALC

caption EMPLOYEE_NAME

columnName EMPLOYEE_NAME

dataType STRING

14-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g l o o k u p s

position of this or any column. No data will be displayed in the lookup
column in the table in the designer. The lookups are only visible when
the application is running. The data type of STRING is used here
because that is the data type of the LAST_NAME column which is
specified later as the lookup column. Calculated columns are read-only,
by default.

5 Select the Events tab of the Inspector (assuming the new column is still
selected in the content pane). Select, then double-click the calcFields
event. The cursor is positioned in the appropriate location in the Source
pane. Enter the following code, which actually performs the lookup
and places the looked-up value into the newly-defined column.

void queryDataSet2_calcFields(ReadRow changedRow, DataRow
calcRow, boolean isPosted) throws DataSetException{

// Define a DataRow to hold the employee number to look for
// in queryDataSet1, and another to hold the row of employee

// data that we find.
DataRow lookupRow = new DataRow(queryDataSet1, "EMP_NO");
DataRow resultRow = new DataRow(queryDataSet1);

// The EMP_NO from the current row of queryDataSet2 is our
// lookup criteria.
// We look for the first match, since EMP_NO is unique.
// If the lookup succeeds, concatenate the name fields from
// the employee data, and put the result in dataRow;
// otherwise, let the column remain blank.

lookupRow.setShort("EMP_NO", changedRow.getShort("EMP_NO"));
if (queryDataSet1.lookup(lookupRow, resultRow,

Locate.FIRST))
calcRow.setString("EMPLOYEE_NAME",

resultRow.getString("FIRST_NAME") +
" " + resultRow.getString("LAST_NAME"));

}
}

6 Click the Source tab. Enter the following code after the call to jbInit().
This opens queryDataSet1, which is attached to the EMPLOYEE table.
Normally, a visual, data-aware component such as JdbTable would
open the data set for you automatically, but in this case, there is no
visual component attached to this data set, so it must be opened
explicitly.

queryDataSet1.open();

7 Select Run|Run Project to run the application.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-7

U s i n g c a l c u l a t e d c o l u m n s

The running application will look like this:

When the application is running, the values in the calculated lookup
column will automatically adjust to changes in any columns, in this case
the EMP_NO column, referenced in the calculated values. If the EMP_NO
field is changed, the lookup will display the value associated with the
current value when that value is posted.

Using calculated columns
Typically, a Column in a StorageDataSet derives its values from data in a
database column or as a result of being imported from a text file. A
column may also derive its values as a result of a calculated expression.
JBuilder supports two kinds of calculated columns: calculated and
aggregated.

In order to create a calculated column, you need to create a new persistent
Column object in the StorageDataSet and supply the expression to the
StorageDataSet object’s calcFields event handler. Calculated columns can
be defined and viewed in JBuilder. The calculated values are only visible
in the running application. JBuilder-defined calculated columns are not
resolved to or provided from its data source, although they can be written
to a text file. For more information on defining a calculated column in the
designer, see “Tutorial: Creating a calculated column in the designer” on
page 14-8. For more information on working with columns, see Chapter 7,
“Working with columns.”

The formula for a calculated column generally uses expressions involving
other columns in the data set to generate a value for each row of the data
set. For example, a data set might have non-calculated columns for
QUANTITY and UNIT_PRICE and a calculated column for
EXTENDED_PRICE. EXTENDED_PRICE would be calculated by
multiplying the values of QUANTITY and UNIT_PRICE.

14-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g c a l c u l a t e d c o l u m n s

Calculated aggregated columns can be used to group and/or summarize
data, for example, to summarize total sales by quarter. Aggregation
calculations can be specified completely through property settings and
any number of columns can be included in the grouping. Four types of
aggregation are supported (sum, count, min, and max) as well as a
mechanism for creating custom aggregation methods. For more
information, see “Aggregating data with calculated fields” on page 14-10.

Calculated columns are also useful for holding lookups from other tables.
For example, a part number can be used to retrieve a part description for
display in an invoice line item. For information on using a calculated field
as a lookup field, see “Creating lookups” on page 14-2.

Values for all calculated columns in a row are computed in the same event
call.

These are the topics covered:

• Tutorial: Creating a calculated column in the designer

• Aggregating data with calculated fields

• Tutorial: Aggregating data with calculated fields

• Setting properties in the AggDescriptor

• Creating a custom aggregation event handler

Tutorial: Creating a calculated column in the designer

This tutorial builds on the example in “Retrieving data for the tutorials”
on page 13-2. The database table that is queried is EMPLOYEE. The
premise for this example is that the company is giving all employees a
10% raise. We create a new column named NEW_SALARY and create an
expression that multiplies the existing SALARY data by 1.10 and places
the resulting value in the NEW_SALARY column. The completed project
is available in the /samples/DataExpress/CalculatedColumn
subdirectory of your JBuilder installation under the project name
CalculatedColumn.jpr.

1 Create a new application by following “Retrieving data for the
tutorials” on page 13-2. This step enables you to connect to a database,
read data from a table, and view and edit that data in a data-aware
component.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-9

U s i n g c a l c u l a t e d c o l u m n s

2 Click the expand icon beside queryDataSet1 in the component tree to
display all columns. Select <new column>. Set the following properties
in the Inspector:

If you were adding more than one column, you could manually edit the
setColumns() method to change the position of the new columns or any
other persistent column. No data will be displayed in the calculated
column in the table in the designer. The calculations are only visible
when the application is running. The data type of BIGDECIMAL is
used here because that is the data type of the SALARY column which
will be used in the calculation expression. Calculated columns are
always read-only.

3 Select the queryDataSet1 object, select the Events tab of the Inspector,
select the calcFields event handler, and double-click its value. This
creates the stub for the event’s method in the Source window.

4 Modify the event method to calculate the salary increase, as follows:

void queryDataSet1_calcFields(ReadRow changedRow, DataRow
calcRow, boolean isPosted) throws DataSetException{

//calculate the new salary
calcRow.setBigDecimal("NEW_SALARY",

changedRow.getBigDecimal("SALARY").multiply(new
BigDecimal(1.1)));

}

This method is called for calcFields whenever a field value is saved and
whenever a row is posted. This event passes in an input which is the
current values in the row (changedRow), an output row for putting any
changes you want to make to the row (calcRow), and a boolean (isPosted)
that indicates whether the row is posted in the DataSet or not. You may
not want to recalculate fields on rows that are not posted yet.

5 Import the java.math.BigDecimal class to use a BIGDECIMAL data type.
Add this statement in the Source window to the existing import
statements.

import java.math.BigDecimal;

6 Run the application to view the resulting calculation expression.

Property name Value

calcType CALC

caption NEW_SALARY

columnName NEW_SALARY

dataType BIGDECIMAL

currency true

14-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g c a l c u l a t e d c o l u m n s

When the application is running, the values in the calculated column will
automatically adjust to changes in any columns referenced in the
calculated expression. The NEW_SALARY columns displays the value of
(SALARY * 1.10). The running application looks like this:

Aggregating data with calculated fields

You can use the aggregation feature of a calculated column to summarize
your data in a variety of ways. Columns with a calcType of aggregated have
the ability to

• Group and summarize data to determine bounds.

• Calculate a sum.

• Count the number of occurrences of a field value.

• Define a custom aggregator you can use to define your own method of
aggregation.

The AggDescriptor is used to specify columns to group, the column to
aggregate, and the aggregation operation to perform. The aggDescriptor is
described in more detail below. The aggregation operation is an instance
of one of these classes:

• CountAggOperator
• SumAggOperator
• MaxAggOperator
• MinAggOperator
• A custom aggregation class defined by you

Creating a calculated aggregated column is simpler than creating a
calculated column, because no event method is necessary (unless you are
creating a custom aggregation component). The aggregate can be
computed for the entire data set, or you can group by one or more
columns in the data set and compute an aggregate value for each group.
The calculated aggregated column is defined in the data set being

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-11

U s i n g c a l c u l a t e d c o l u m n s

summarized, so every row in a group will have the same value in the
calculated column (the aggregated value for that group). The column is
hidden by default. You can choose to show the column or show its value
in another control, which is what we do in the following tutorial section.

Tutorial: Aggregating data with calculated fields
In this example, we will query the SALES table and create a JdbTextField
component to display the sum of the TOTAL_VALUE field for the current
CUST_NO field. To do this, we first create a new column called
GROUP_TOTAL. Then set the calcType property of the column to
aggregated and create an expression that summarizes the TOTAL_VALUE
field from the SALES table by customer number and places the resulting
value in the GROUP_TOTAL column. The completed project is available
in the /samples/DataExpress/Aggregating subdirectory of your JBuilder
installation.

1 Create a new application by following “Retrieving data for the tutorials”
on page 13-2. This step enables you to connect to a database, read data
from a table, and view and edit that data in a data-aware component.

2 Click on queryDataSet1 in the component tree. This forms the query to
populate the data set with values to be aggregated. Open the query
property of queryDataSet1, and modify the SQL Statement to read:

SELECT CUST_NO, PO_NUMBER, SHIP_DATE, TOTAL_VALUE from SALES

Click the Test Query button to test the query and ensure its validity.
When successful, click OK.

3 Click on the expand icon beside queryDataSet1 in the component tree.
Select <new column>. In the Inspector, set the following properties:

A new column is instantiated and the following code is add to the
jbInit() method. To view the code, select the Source tab to view, select
the Design tab to continue.

Property name Value

caption GROUP_TOTAL

columnName GROUP_TOTAL

currency True

dataType BIGDECIMAL

calcType aggregated

visible Yes

14-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g c a l c u l a t e d c o l u m n s

column1.setCurrency(true);
column1.setCalcType(com.borland.dx.dataset.CalcType.AGGREGATE);
column1.setCaption("GROUP_TOTAL");
column1.setColumnName("GROUP_TOTAL");
column1.setDataType(com.borland.dx.dataset.Variant.BIGDECIMAL);

4 Add a JdbTextField from the dbSwing tab of the component palette to
the UI designer. Set its dataSet property to queryDataSet1. Set its
columnName property to GROUP_TOTAL. This control displays the
aggregated data. You may wish to add a JdbTextArea to describe what
the text field is displaying.

No data will be displayed in the JdbTextField in the designer. The
calculations are only visible when the application is running. The data
type of BIGDECIMAL is used here because that is the data type of the
TOTAL_VALUE column which will be used in the calculation
expression. Aggregated columns are always read-only.

5 Select each of the following columns, and set the visible property of
each to yes.

• PO_NUMBER

• CUST_NO

• SHIP_DATE

This step ensures the columns that will display in the table are
persistent. Persistent columns are enclosed in brackets in the content
pane.

6 Select the GROUP_TOTAL column in the content pane. To define the
aggregation for this column, double-click the agg property to display
the agg property editor.

In the agg property editor,

• Select CUST_NO in the Available Columns list. Click Add to Group
to select this as the field that will be used to define the group.

• Select TOTAL_VALUE from the Aggregate Column list to select this
as the column that contains the data to be aggregated.

• Select SumAggOperator from the Aggregate Operation list to select this
as the operation to be performed.

Based on above selections, you will have a sum of all sales to a given
customer.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-13

U s i n g c a l c u l a t e d c o l u m n s

When the agg property editor looks like the one below, click OK.

This step generates the following source code in the jbInit() method:

column1.setAgg(new com.borland.dx.dataset.AggDescriptor(new
String[] {"CUST_NO"}, "TOTAL_VALUE", new
com.borland.dx.dataset.SumAggOperator()));

7 Run the application by selecting Run|Run Project to view the
aggregation results.

The running application looks like this:

When the application is running, the values in the aggregated field will
automatically adjust to changes in the TOTAL_VALUE field. Also, the
value that displays in the JdbTextField will display the aggregation for the
CUST_NO of the currently selected row.

14-14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g c a l c u l a t e d c o l u m n s

Setting properties in the AggDescriptor

The agg property editor provides a simple interface for creating and
modifying AggDescriptor objects. An AggDescriptor object’s constructor
requires the following information:

• Grouping Columns - an array of strings (in any order) indicating the
names of columns used to define a subset of rows of the DataSet over
which the aggregation should occur.

• Aggregate Column - a string representing the name of the column
whose values are to be aggregated.

• Aggregate Operator - name of an object of AggOperator type which
performs the actual aggregate operation.

The agg property editor extracts possible column names for use as
grouping columns, and presents them as a list of Available Columns. Only
non-calculated, non-aggregate column names are allowed in the list of
grouping columns.

If the DataSet for whose Column the agg property is being defined has a
MasterLink descriptor (i.e., is a detail DataSet), the linking column names
will be added by default to the list of grouping columns when defining a
new AggDescriptor.

The buttons beneath the list of grouping columns and available columns
can be used to move the highlighted column name of the list above the
button to the opposite list. Also, double-clicking on a column name in a
list will move the column name to the opposite list. Entries within both
lists are read-only. Since the ordering of column names is insignificant
within a group, a column name is always appended to the end of its
destination list. An empty (null) group is allowed.

The Aggregate Column choice control will contain the list of all
non-aggregate column names for the current DataSet. Although the current
set of AggOperators provided with DataExpress package do not provide
support for non-numeric aggregate column types, we do not restrict
columns in the list to numeric types, since it’s possible that a user’s
customized AggOperator could support string and date types.

The Aggregate Operation choice control displays the list of AggOperators
built into DataExpress package as well as any user-defined AggOperators
within the same class context as the AggDescriptor’s Column.

Users desiring to perform calculations on aggregated values (e.g., the sum
of line items ordered multiplied by a constant) should check the Calculated
Aggregate check box. Doing so disables the Aggregate Column and
Aggregate Operation choice controls, and substitutes their values with
‘null’ in the AggDescriptor constructor, signifying a calculated aggregate
type. When the Calculated Aggregate check box is unchecked, the
Aggregate Column and Aggregate Operation choice controls are enabled.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-15

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

Creating a custom aggregation event handler

To use an aggregation method other than the ones provided by JBuilder,
you can create a custom aggregation event handler. One way to create a
custom aggregation event handler is to code the calcAggAdd and
calcAggDelete events through the UI designer. calcAggAdd and calcAggDelete
are StorageDataSet events that are called after the AggOperator is notified of
an update operation. A typical use for these events is for totaling columns
in a line items table (like SALES). The dollar amounts can be totaled using
a built-in SumAggOperator. Additional aggregated columns can be added
with the AggDescriptor’s aggOperator property set to null. These additional
columns might be for applying a tax or discount percentage on the
subtotal, calculating shipping costs, and then calculating a final total.

You can also create a custom aggregation class by implementing a custom
aggregation operator component by extending from AggOperator and
implementing the abstract methods. The advantage of implementing a
component is reusability in other DataSets. You may wish to create
aggregation classes for calculating an average, standard deviation, or
variance.

Adding an Edit or Display Pattern for data formatting
All data stored internally as numbers, dates, etc., is entered and displayed
as text strings. Formatting is the conversion from the internal
representation to a string equivalent. Parsing is the conversion from string
representation to internal representation. Both conversions are defined by
rules specified by string-based patterns.

All formatting and parsing of data in the DataSet package is controlled by
the VariantFormatter class, which is uniquely defined for every Column in a
DataSet. To simplify the use of this class, there are corresponding string
properties which, when set, construct a VariantFormatter for the Column
using the basic pattern syntax defined in the JDK java.text.Format classes.

There are four distinct kinds of patterns based on the data type of the item
you are controlling.

1 Numeric patterns
2 Date and time patterns
3 String patterns
4 Boolean patterns

See “String-based patterns (masks)” in the DataExpress Component Library
Reference for more information on patterns.

14-16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

The Column level properties that work with these string-based patterns are:

• The displayMask property, which defines the pattern used for basic data
formatting and data entry.

• The editMask property, which defines the pattern used for more
advanced keystroke-by-keystroke data entry (also called parsing).

• The exportDisplayMask property, which defines the pattern used when
importing and exporting data to text files.

The default VariantFormatter implementations for each Column are simple
implementations which were written to be fast. Those columns using
punctuation characters, such as dates, use a default pattern derived from
the column’s locale. To override the default formatting (for example,
commas for separating groups of thousands, or a decimal point), explicitly
set the string-based pattern for the property you want to set (displayMask,
editMask, or exportDisplayMask).

Setting a displayMask, editMask, or exportDisplayMask to an empty string or
null has special meaning; it selects its pattern from the default Locale. This
is the default behavior of JBuilder for columns of type Date, Time,
Timestamp, Float, Double, and BigDecimal. By doing this, JBuilder
assures that an application using the defaults will automatically select the
proper display format when running under a different locale.

Note When writing international applications that use locales other than en_US
(U.S. English locale), you must use the U.S. style separators (for example,
the comma for the thousands separator and the period as the decimal
point) in your patterns. This allows you to write an application that uses
the same set of patterns regardless of its target locale. When using a locale
other than en_US, these characters are translated by the JDK to their
localized equivalents and displayed appropriately. For an example of
using patterns in an international application, see the IntlDemo.jpr file,
which is in the /samples/dbSwing/MultiLingual subdirectory of your
JBuilder installation.

To override the default formats for numeric and date values that are
stored in locale files, set the displayMask, editMask, or exportDisplayMask
property (as appropriate) on the Column component of the DataSet.

The formatting capabilities provided by DataExpress package
string-based patterns are typically sufficient for most formatting needs. If
you have more specific formatting needs, the format mechanism includes
general-purpose interfaces and classes that you can extend to create
custom format classes.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-17

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

Display masks

Display masks are string-based patterns that are used to format the data
displayed in the Column, for example, in a JdbTable. Display masks can add
spaces or special characters within a data item for display purposes.

Display masks are also used to parse user input by converting the string
input back into the correct data type for the Column. If you enter data which
cannot be parsed using the specified display mask pattern, you will not be
able to leave the field until data entered is correct.

Tip User input that cannot be parsed with the specified pattern generates
validation messages. These messages appear on the JdbStatusLabel control
when the JdbStatusLabel and the UI component that displays the data for
editing (for example, a JdbTable) are set to the same DataSet.

Edit masks

Before editing starts, the display mask handles all formatting and parsing.
Edit masks are optional string-based patterns that are used to control data
editing in the Column and to parse the string data into the Column
keystroke-by-keystroke.

In a Column with a specified edit mask, literals included in the pattern
display may be optionally saved with the data. Positions in the pattern
where characters are to be entered display as underscores (_) by default.
As you type data into the Column with an edit mask, input is validated with
each key pressed against characters that the pattern allows at that position
in the mask.

Characters that are not allowed at a given location in the pattern are not
accepted and the cursor moves to the next position only when the criteria
for that location in the pattern is satisfied.

Using masks for importing and exporting data

When you import data into a DataExpress component, JBuilder looks for a
.SCHEMA file by the same name as the data file. If it finds one, the
settings in the .SCHEMA file take precedence. If it doesn’t find one, it
looks at the column’s exportDisplayMask property. Use the exportDisplayMask
to format the data being imported. Often, data files contain currency
formatting characters which cannot be read directly into a numeric
column. You can use an exportDisplayMask pattern to read in the values
without the currency formatting. Once in JBuilder, set display and/or edit
masks to re-establish currency (or other formatting) as desired.

14-18 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

When exporting data, JBuilder uses the exportDisplayMask to format the
data for export. At the same time, it creates a .SCHEMA file with these
settings so that data can be easily imported back into a DataExpress
component.

Data type dependent patterns

The following sections describe and provide examples for string-based
patterns for various types of data.

Patterns for numeric data
Patterns for numeric type data consist of two parts: the first part specifies
the pattern for positive numbers (numbers greater than 0) and the second
for negative numbers. The two parts are separated with a semi-colon (;).
The pattern symbols for numeric data are described in “Numeric data
patterns” in the DataExpress Component Library Reference.

Numeric Column components always have display and edit masks. If you
do not set these properties explicitly, default patterns are obtained using
the following search order:

1 From the Column component’s locale.

2 If no locale is set for the Column, from the DataSet object’s locale.

3 If no locale is set for the DataSet, from the default system locale.
Numeric data displays with three decimal places by default.

Numeric columns allow any number of digits to the left of the decimal
point; however, masks restrict this to the number of digits specified to the
left of the decimal point in the mask. To ensure that all valid values can be
entered into a Column, specify sufficient digits to the left of the decimal
point in your pattern specification.

In addition, every numeric mask has an extra character positioned at the
left of the data item that holds the sign for the number.

The code that sets the display mask to the first pattern in the table below
is:

column1.setDisplayMask(new String("###%"));

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-19

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

The following table explains the pattern specifications for numeric data:

Patterns for date and time data
Columns that contain date, time, and timestamp data always have display
and edit masks. If you do not set these properties explicitly, default
patterns are obtained using the following search order:

1 From the Column component’s locale.

2 If no locale is set for the Column, from the DataSet object’s locale.

3 If no locale is set for the DataSet, from the default system locale.

The pattern symbols you use for date, time, and timestamp data are
described in “Date, time, and timestamp patterns” in the DataExpress
Component Library Reference.

For example, the code that sets the edit mask to the first pattern listed
below is:

column1.setDisplayMask(new String("MMM dd, yyyyG"));

Pattern specification Data values
Formatted
value Meaning

###% 85 85% All digits are optional,
leading zeros do not
display, value is divided
by 100 and shown as a
percentage

#,##0.0#^ cc;-#,##0.0#^ cc 500.0
-500.5
004453.3211
-00453.3245

500.0 cc
-500.5 cc
4,453.32 cc
-453.32 cc

The “0” indicates a
required digit, zeroes are
not suppressed. Negative
numbers are preceded
with a minus sign. The
literal “cc” displays
beside the value. The
cursor is positioned at the
point of the carat (^) with
digits moving to the left
as you type each digit.

$#,###.##;($#,###.##) 4321.1
-123.456

$4,321.1
($123.46)

All digits optional,
includes a thousands
separator, decimal
separator, and currency
symbol. Negative values
enclosed in parenthesis.
Typing in a minus sign (–)
or left parenthesis (()
causes JBuilder to supply
parenthesis surrounding
the value.

14-20 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

The following table explains the pattern specifications for date and time
data:

Patterns for string data
Patterns for formatting and editing text data are specific to DataExpress
classes. They consist of up to four parts, separated by semicolons, of
which only the first is required. These parts are:

1 The string pattern.

2 Whether literals should be stored with the data or not. A value of 1
indicates the default behavior, to store literals with the data. To remove
literals from the stored data, specify 0.

3 The character to use as a blank indicator. This character indicates the
spaces to be entered in the data. If this part is omitted, the underscore
character is used.

4 The character to use to replace blank positions on output. If this part is
omitted, blank positions are stripped.

The pattern symbols you use for text data are described in “Text patterns”
in the DataExpress Component Library Reference.

For example, the code that sets the display and edit masks to the first
pattern listed below is:

column1.setDisplayMask(new String("00000{-9999}"));
column1.setEditMask(new String("00000{-9999}"));

Pattern
specification Data values

Formatted
value Meaning

MMM dd, yyyyG January 14, 1900
February 2, 1492

Jan 14, 1900AD
Feb 02, 1492AD

Returns the
abbreviation of the
month, space
(literal), two digits
for the day, 4 digits
for year, plus era
designator

MM/d/yy H:m July 4, 1776 3:30am
March 2, 1997 11:59pm

07/4/76 3:30
03/2/92 23:59

Returns the number
of the month, one or
two digits for the
day (as applicable),
two digits for the
year, plus the hour
and minute using a
24-hour clock

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-21

A d d i n g a n E d i t o r D i s p l a y P a t t e r n f o r d a t a f o r m a t t i n g

The following table explains some pattern specifications:

Patterns for boolean data
The BooleanFormat component uses a string-based pattern that is helpful
when working with values that can have two values, stored as true or
false. Data that falls into each category is formatted using string values
you specify. This formatter also has the capability to format null or
unassigned values.

For example, you can store gender information in a column of type
boolean but can have JBuilder format the field to display and accept input
values of “Male” and “Female” as shown in the following code:

column1.setEditMask("Male;Female;");
column1.displayMask("Male;Female;");

Pattern
specification

Data
values

Formatted
value Meaning

00000{-9999} 950677394
00043
1540001

95067-7394
00043
00154-0001

Display leading zeros for the
left 5 digits (required), optional
remaining characters include a
dash literal and 4 digits. Use
this pattern for U.S. postal
codes.

L0L 0L0 H2A2R9
M1M3W4

H2A 2R9
M1M 3W4

The L specifies any letter A-Z,
entry required. The 0 (zero)
specifies any digit 0-9, entry
required, plus (+) and minus (–)
signs not permitted. Use this
pattern for Canadian postal
codes.

{(999)} 000-0000^!;0 4084311000 (408) 431-1000 A pattern for a phone number
with optional area code
enclosed in parenthesis. The
carat (^) positions the cursor at
the right side of the field and
data shifts to the left as it is
entered. To ensure data is
stored correctly from right to
left, use the ! symbol. (Numeric
values do this automatically.)
The zero (0) indicates that
literals are not stored with the
data.

14-22 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

P r e s e n t i n g a n a l t e r n a t e v i e w o f t h e d a t a

The following table illustrates valid boolean patterns and their formatting
effects:

Presenting an alternate view of the data
You can sort and filter the data in any StorageDataSet. However, there are
situations where you need the data in the StorageDataSet presented using
more than one sort order or filter condition simultaneously. The
DataSetView component provides this capability.

The DataSetView component also allows for an additional level of
indirection which provides for greater flexibility when changing the
binding of your UI components. If you anticipate the need to rebind your
UI components and have several of them, bind the components to a
DataSetView instead of directly to the StorageDataSet. When you need to
rebind, change the DataSetView component to the appropriate
StorageDataSet, thereby making a single change that affects all UI
components connected to the DataSetView as well.

To create a DataSetView object, and set its storageDataSet property to the
StorageDataSet object that contains the data you want to view,

1 Create a new application by following “Retrieving data for the
tutorials” on page 13-2. This step enables you to connect to a database,
read data from a table, and view and edit that data in a data-aware
component.

2 Add a DataSetView component from the Data Express tab to the
component tree or the UI designer.

3 Set the storageDataSet property of the DataSetView component to
queryDataSet1.

4 The DataSetView navigates independently of its associated
StorageDataSet. Add another TableScrollPane and JdbTable to the UI
designer. To enable the controls to navigate together, set the dataSet
property of the JdbTable to dataSetView1.

5 Compile and run the application.

Pattern specification
Format for
true values

Format for
false values

Format for
null values

male;female male female (empty string)

T,F,T T F T

Yes,No,Don’t know Yes No Don’t know

smoker;; smoker (empty string) (empty string)

smoker;nonsmoker; smoker nonsmoker (empty string)

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-23

E n s u r i n g d a t a p e r s i s t e n c e

The DataSetView displays the data in the QueryDataSet but does not duplicate
its storage. It presents the original unfiltered and unsorted data in the
QueryDataSet.

You can set filter and sort criteria on the DataSetView component that differ
from those on the original StorageDataSet. Attaching a DataSetView to a
StorageDataSet and setting new filter and/or sort criteria has no effect on
the filter or sort criteria of the StorageDataSet.

To set filter and/or sort criteria on a DataSetView,

1 Select the Frame file in the project pane. Select the Design tab.

2 Select the DataSetView component.

3 On the Properties page in the Inspector,

• Select the sort property to change the order records are displayed in
the DataSetView. See “Sorting data” on page 13-9 for more
information on the sortDescriptor.

• Select the masterLink property to define a parent data set for this
view. See Chapter 9, “Establishing a master-detail relationship” for
more information on the masterLinkDescriptor.

4 On the Events page in the Inspector,

• Select the filterRow method to temporarily hide rows in the
DataSetView. See “Filtering data” on page 13-5 for more information
on filtering.

You can edit, delete, and insert data in the DataSetView by default. When
you edit, delete, and insert data in the DataSetView, you are also editing,
deleting, and inserting data in the StorageDataSet the DataSetView is bound
to.

• Set the enableDelete property to false to disable the user’s ability to
delete data from the StorageDataSet.

• Set the enableInsert property to false to disable the user’s ability to
insert data into the StorageDataSet.

• Set the enableUpdate property to false to disable the user’s ability to
update data in the StorageDataSet.

Ensuring data persistence
Between the time that you develop an application and each time the user
runs it, many changes can happen to the data at its source. Typically, the
data within the data source is updated. But more importantly, structural

14-24 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E n s u r i n g d a t a p e r s i s t e n c e

changes can happen and these types of changes cause greater risk for your
application to fail. When such condition occurs, you can

• Let the running application fail, if and when a such event is
encountered. For example, a lookup table’s column gets renamed at the
database server but this is not discovered until an attempt is made in
the application to edit the lookup column.

• Stop the application from running and display an error message.
Depending on where the unavailable data source is encountered, this
approach reduces the possibility of partial updates being made to the
data.

By default, the columns that display in a data-aware component are
determined at run-time based on the Columns that appear in the DataSet. If
the data structure at the data source has been updated and is incompatible
with your application, a run-time error is generated when the situation is
encountered.

JBuilder offers support for data persistence as an alternative handling of
such situations. Use this feature if your application depends on particular
columns of data being available in order for your application to run
properly. This assures that the column will be there and the data
displayed in the specified order. If the source column of the persistent
Column changes or is deleted, an Exception is generated instead of a run-time
error when access to the column’s data fails.

Making columns persistent

You can make a column persistent by setting any property at the Column
level (for example, an edit mask). When a column has become persistent,
square brackets ([]) are placed around the column name.

To set a Column level property,

1 Open any project that includes a DataSet object, for example, select any
project file (.jpr) in the /samples/DataExpress/ subdirectory of your
JBuilder installation.

2 Double-click the Frame file to open it into the content pane, then click the
Design tab.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-25

E n s u r i n g d a t a p e r s i s t e n c e

3 Double-click the DataSet object. This displays the Column designer for
the data set. The Column designer looks like this for the employee
sample table:

4 Select the Column for which you want to set the property. The Inspector
updates to reflect the properties (and events) of the selected column.

5 Set any property by entering a value in its value box in the Inspector. If
you don’t want to change any column properties, you can set a value,
then reset the value to its default.

To demonstrate, set the a minimum value for a Column containing numeric
data by entering a numeric value in the min property. JBuilder
automatically places square brackets ([]) around the column name.

In the Column designer, the columns for that data set are displayed in a
table in the UI designer. A toolbar for adding, deleting, navigating, and
restructuring the data set is provided.

• The Insert Column into the DataSet button inserts a new column at the
preferred ordinal of the highlighted column in the table.

• The Delete button removes the column from the data set.

• The Move Up and Move Down buttons manipulate the columns
preferred ordinal, changes the order of display in data-aware
components, such as a table control.

• The Choose The Properties To Display button lets you choose which
properties to display in the designer.

14-26 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g v a r i a n t d a t a t y p e s

• The Restructure button is only available if the data set’s store property
has been set to a DataStore property. For more information on DataStore,
see Chapter 12, “Persisting and storing data in a DataStore.”

Restructure compiles the this component and launches a separate VM
to perform a restructure of the DataStore associated with the data set.
While the Restructure is running, a dialog box is displayed to show the
status of the restructure and to allow you to cancel the restructure.

• The Persist All MetaData button will persist all the metadata that is
needed to open a QueryDataSet at run time. See “Using the Column
designer to persist metadata” on page 7-4.

• The Make All MetaData Dynamic button enables you to update a query
after the table may have changed on the server. To do this, you must
first make the metadata dynamic, then persist it, in order to use new
indices created on the database table. Selecting Make All MetaData
Dynamic will REMOVE CODE from the source file. See “Making
metadata dynamic using the Column designer” on page 7-4.

• The Generate RowIterator Class button opens a dialog that provides
lightweight (low memory usage and fast binding) iteration capabilities
to ensure static type-safe access to columns. See “The Generate
RowIterator Class button” on page 7-3 for more information.

To close the Column designer, double-click any UI component, such as
contentPane, in the content pane, or click a different component, and select
Activate Designer.The only way to close one designer is to open a
different one.

Using variant data types
Columns can contain many types of data. This topic discusses storing Java
objects in a Column. Columns are introduced more completely in Chapter 7,
“Working with columns.”

Storing Java objects

DataSet and DataStore can store Java objects in columns of a DataSet.

Fields in a SQL table, reported by JDBC as being of type
java.sql.Types.OTHER, are mapped into columns whose data type
isVariant.OBJECT, or you can set a column’s data type to Object and set/get
values through the normal data set API.

A d d i n g f u n c t i o n a l i t y t o d a t a b a s e a p p l i c a t i o n s 14-27

U s i n g v a r i a n t d a t a t y p e s

If a DataStore is used, the objects must be serializable. If they are not, an
exception is raised whenever the DataStore attempts to save the object.
Also, the class must exist on the CLASSPATH when it attempts to read an
object. If not, the attempt will fail.

To format and edit a column that contains a Java object:

• Default formatting and editing.

In the UI designer, a formatter is assigned to Object columns by default.
When the object is edited, it will simply be an object of type
java.lang.String regardless of what the type was originally.

• Custom formatting and editing.

You can, and probably will want to, define the formatter property on a
column to override the default functionality, or at least make the
column non-editable. You can use a custom formatter to define the
proper formatting and parsing of the objects kept in the column.

A column formatter is used for all the records in the data set. The
implication of this is that you cannot mix object types in a particular
column. This restriction is only for customized editing

14-28 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g a u s e r i n t e r f a c e u s i n g d b S w i n g c o m p o n e n t s 15-1

C h a p t e r

15
Chapter15Creating a user interface using

dbSwing components
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

The dbSwing package allows you to build database applications that take
advantage of the Java Swing component architecture. In addition to
pre-built, data-aware subclasses of most Swing components, dbSwing also
includes several utility components designed specifically for use in
developing DataExpress and DataStore-based applications.

To create a database application, you first need to connect to a database
and provide data to a DataSet. “Retrieving data for the tutorials” on
page 13-2 sets up a query that can be used as a starting point for creating a
database application and a basic user interface.

To use the data-aware dbSwing components,

1 Select the Frame file. Click the Design tab.

2 Select the component on the component palette.

3 Click in the UI designer to place the component in the application.

4 Select the component in the component tree or the UI designer (The
designer displays black sizing nibs on the edges of a selected
component.)

5 Some of the component’s (JdbNavToolBar and JdbStatusLabel)
automatically bind to whichever data set has focus. For others (like
JdbTable), set the component’s dataSet and/or columnName properties in
the Inspector to bind the component to an instantiated DataSet.

15-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : U s i n g d b S w i n g c o m p o n e n t s t o c r e a t e a d a t a b a s e a p p l i c a t i o n U I

The following list provides a few of the dbSwing components available
from the dbSwing tab of the component palette:

dbSwing offers significant advantages over Swing with increased
functionality and data-aware capabilities. If you are considering building
new applications, especially those that access databases, dbSwing is
probably your best choice.

dbSwing is entirely lightweight, provides look-and-feel support for
multiple platforms, and has strong conformance to Swing standards.
Using dbSwing components, you can be sure all your components are
lightweight.

Tutorial: Using dbSwing components to create a database
application UI

Before you create a UI, you need to create an application, connect to a
database and retrieve data from a data source.

See Chapter 4, “Connecting to a database” and “Querying a database” on
page 5-14 for more information on how to do this, or follow the
“Retrieving data for the tutorials” on page 13-2 for an example.

Normally the first step in setting up a user interface is to determine the
appropriate layout for your application (how the components are
arranged visually, and which Java Layout Manager to use to control their
placement.) However, learning how to use Java layout managers is a big
task in itself, and is covered in the chapter “Creating a user interface” in
Building applications with JBuilder.

You have two choices on how to proceed to create user interface with the
JBuilder UI designer:

• Use a standard Java layout manager and let it control the placement
and size of the components using the constraints property values you
assign. This requires familiarity with the behavior of each of the layout
managers, and can be confusing and frustrating to a new Java
developer.

• JdbComboBox • JdbLabel

• JdbList • JdbNavToolBar

• JdbStatusLabel • JdbTable

• JdbTextArea • JdbTextField

• JdbTextPane • TableScrollPane

C r e a t i n g a u s e r i n t e r f a c e u s i n g d b S w i n g c o m p o n e n t s 15-3

T u t o r i a l : U s i n g d b S w i n g c o m p o n e n t s t o c r e a t e a d a t a b a s e a p p l i c a t i o n U I

• Use null layout or XYLayout to prototype your UI, then convert to the
final layouts after the visual components are in place. The advantage to
this is that with these two layouts, you can size and align the
components as you design. JBuilder will then use the size and location
of the components in the UI designer to set their constraints when you
convert to a different layout.

To learn about using layouts, see the online help topics “Laying out your
UI”, and “Using layout managers” in Building Applications with JBuilder.

The steps below add the following UI components to a BorderLayout panel
from the dbSwing tab on the component palette:

• JdbTable (and container), used to display two-dimensional data, in a
format similar to a spreadsheet.

• JdbNavToolBar, a set of buttons that help you navigate through the data
displayed in a JdbTable. It enables you to move quickly through the data
set when the application is running.

• JdbStatusLabel, which displays information about the current record or
current operation, and any error messages.

You will add these components to contentPane (BorderLayout), which is a
JPanel, and the main UI container into which you are going to assemble
the visual components.

1 Click the Design tab on Frame1.java to open the UI designer, then click
on contentPane (BorderLayout) in the component tree to select it. The UI
designer displays black square sizing nibs around the selected
component’s outer edges in the UI designer.

2 Click the dbSwing tab on the component palette, then click the
JdbNavToolBar.

3 Click the area close to the center, top edge of the panel in the UI
designer. An instance of JdbNavToolBar, called jdbNavToolBar1, is added to
the panel and is displayed in the component tree. jdbNavToolBar1
automatically attaches itself to whichever StorageDataSet has focus.

jdbNavToolBar1 is now the currently selected component, and should
extend across the top edge of the panel. Don’t worry if it went
somewhere different than you expected. The layout manager controls
the placement, guessing the location by where you clicked. If you were
too close to the left or right or middle of the panel, it may have guessed
you wanted the component in a different place than you intended. You
can fix that in the next step.

15-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

T u t o r i a l : U s i n g d b S w i n g c o m p o n e n t s t o c r e a t e a d a t a b a s e a p p l i c a t i o n U I

4 Look at the constraints property for jdbNavToolBar1 in the Inspector. It
should have a value of NORTH. If it doesn’t, click once on the value to
display a drop-down list, and select North from the list.

5 Add a JdbStatusLabel component, using the same method. Drop it in the
area near the center, bottom edge of the panel. jdbStatusLabel1 should
have a constraints property value of SOUTH. If it doesn’t, change it in
the Inspector. jdbStatusLabel1 automatically attaches itself to whichever
DataSet has focus.

6 Add a TableScrollPane component to the center of the panel. Make sure
its constraints property is CENTER. A table should fill the rest of the panel.

Scrolling behavior is not available by default in any Swing component
or dbSwing extension, so, to get scrolling behavior, you must add
scrollable Swing or dbSwing components to a JScrollPane or a
TableScrollPane. TableScrollPane provides special capabilities to JdbTable
over JScrollPane. See the dbSwing documentation for more information.

7 Finally, drop a JdbTable into the middle of the tableScrollPane1
component in the designer. This fills the tableScrollPane1 container with
jdbTable1. In the Inspector, set the dataSet property for jdbTable1 to
whichever data set you want to view, for example, queryDataSet1.

You’ll notice that the designer displays a table that displays live data
and column headers. JdbTable allows multi-line column headers. Enter a
column caption like “line1<NL>line2” in the Inspector or
“line1\nline2” in code to see both lines in the table’s header. Also, you
can sort data by clicking on a table header in the running application.

8 Select Run|Run Project to run the application and browse and edit the
data set.

The running application will look something like this:

C r e a t i n g a u s e r i n t e r f a c e u s i n g d b S w i n g c o m p o n e n t s 15-5

B l o c k i n g e d i t i n g i n J d b T a b l e

To save changes back to the data source, you can use the Save button on
the toolbar tool or, for more control on how changes will be saved, create a
custom data resolver. See Chapter 8, “Saving changes back to your data
source” for information on using other data resolving mechanisms.

The DataExpress samples (the dx subdirectory of samples) use dbSwing
components. Other samples are located in the dbswing samples directory
of your JBuilder installation.

Blocking editing in JdbTable
JdbTable’s editable property blocks cell editing as well as insertion and
deletion of rows through its popup menu. However, it does not block a
JdbNavToolBar from inserting or deleting rows. This is because JdbNavToolBar
does not insert and delete rows in a JdbTable; it inserts and deletes rows
into a data set. The JdbTable is updated to reflect those actions. To prevent
these changes, hide or disable the toolbar’s Insert and Delete buttons or set
the data set’s enableInsert and enableDelete properties to false.

15-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g o t h e r c o n t r o l s a n d e v e n t s 16-1

C h a p t e r

16
Chapter16Using other controls and events

Database application
development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

This topic provides more information on using controls and events.
“Retrieving data for the tutorials” on page 13-2 sets up a query that can be
used as a starting point for any of the discussions in this chapter.

Topics discussed in this chapter include:

• Synchronizing visual components

• Displaying status information

• Accessing data and model information from a UI component

• Handling errors and exceptions

Synchronizing visual components
Several data-aware components can be associated with the same DataSet.
In such cases, the components navigate together. When you change the
row position of a component, the row position changes for all components
that share the same cursor. This synchronization of components that share
a common DataSet can greatly ease the development of the user-interface
portion of your application.

The DataSet manages a “pseudo” record, an area in memory where a
newly inserted row or changes to the current row are temporarily stored.
Components which share the same DataSet as their data source share the
same “pseudo” record. This allows updates to be visible as soon as entry
at the field level is complete, such as when you navigate off the field.

You synchronize multiple visual components by setting each of their
dataSet properties to the same data set. When components are linked to
the same data set, they “navigate” together and will automatically stay
synchronized to the same row of data. This is called shared cursors.

16-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A c c e s s i n g d a t a a n d m o d e l i n f o r m a t i o n f r o m a U I c o m p o n e n t

For example, if you use a JdbNavToolBar and a JdbTable in your program,
and connect both to the same QueryDataSet, clicking the “Last” button of
the JdbNavToolBar automatically displays the last record of the QueryDataSet
in the JdbTable as well. If those components are set to different dataSet
components, they do not reposition automatically to the same row of data.
Several of the dbSwing components, including JdbNavToolBar and
JdbStatusLabel, automatically attach themselves to whichever DataSet has
focus.

The goToRow(com.borland.dx.dataset.ReadRow) method provides a way of
synchronizing two DataSet components to the same row (the one that
dataSet is on) even if different sort or filter criteria are in effect.

Accessing data and model information from a UI component
If you set the dataSet property on a component, you should avoid
accessing the DataSet data or model information programmatically
through the component until the component’s peer has been created;
basically, this means until the component is displayed in the application
UI.

Operations which fail or return incorrect/inconsistent results when
executed before the component is displayed in the application UI include
any operation that accesses the model of the component. This may
include,

• <component>.get() or <component>.set() operations
• <component>.insertRow()
• and so on.

To assure successful execution of such operations, check for the open()
event notification generated by the DataSet. Once the event notification
occurs, you are assured that the component and its model are properly
initialized.

Displaying status information
Many data applications provide status information about the data in
addition to displaying the data itself. For example, a particular area of a
window often contains information on the current row position, error
messages, and other similar information. dbSwing includes a
JdbStatusLabel component which provides a mechanism for such status
information. It has a text property that allows you to assign a text string to
be displayed in the JdbStatusLabel. This string overwrites the existing
contents of the JdbStatusLabel and is overwritten itself when the next string
is written to the JdbStatusLabel.

U s i n g o t h e r c o n t r o l s a n d e v e n t s 16-3

D i s p l a y i n g s t a t u s i n f o r m a t i o n

The JdbStatusLabel component automatically connects to whichever
DataSet has focus. The JdbStatusLabel component doesn’t display the data
from the DataSet but displays the following status information generated
by the DataSet:

• Current row position
• Row count
• Validation errors
• Data update notifications
• Locate messages

Building an application with a JdbStatusLabel component

This section serves both as general step-by-step instructions for your
real-world application, and as a tutorial with sample code and data.

To add the JdbStatusLabel to the UI of your existing application:

1 Open the project files for the application to which you want to add a
JdbStatusLabel. This application should include a JdbTable component, a
Database component, and a QueryDataSet component. If you do not have
such an application, use the files created for the topic “Retrieving data
for the tutorials” on page 13-2.

Make sure the layout for the project’s contentPane is set to null.

2 Double-click the Frame file in the project pane of the AppBrowser to
open it in the content pane, then click the Design tab that appears at the
bottom of the AppBrowser.

3 Click the dbSwing tab of the component palette and click the
JdbStatusLabel component.

4 Draw the JdbStatusLabel below the JdbTable component. jdbStatusLabel1
component automatically connects to whichever DataSet object has
focus.

You typically use a JdbStatusLabel component in conjunction with
another UI component, usually a JdbTable that displays the data from
the DataSet. This sets both components to track the same DataSet and is
often referred to as a shared cursor.

Once the JdbStatusLabel is added, you’ll notice that the JdbStatusLabel
component displays information that the cursor is on Row 1 of x (where
x is the number of records in the DataSet).

5 Double-click the QueryDataSet. This displays the Column designer.
Select the Last_Name and First_Name columns and set the required
property to true for both in the Inspector. Set the SALARY column’s min
property to 25000.

6 Run the application.

16-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

H a n d l i n g e r r o r s a n d e x c e p t i o n s

Running the JdbStatusLabel application

When you run the application, you’ll notice that when you navigate the
data set, the row indicator updates to reflect the current row position.
Similarly, as you add or delete rows of data, the row count is updated
simultaneously as well.

To test its display of validation information:

1 Insert a new row of data. Attempt to post this row without having
entered a value for the FIRST_NAME or LAST_NAME columns. A
message displays in the JdbStatusLabel indicating that the row cannot be
posted due to invalid or missing field values.

2 Enter a value for the FIRST_NAME and LAST_NAME columns. Enter a
number in the SALARY column (1000) that doesn’t meet the minimum
value. When you attempt to move off the row, the JdbStatusLabel
displays the same message that the row cannot be posted due to invalid
or missing field values.

By setting the text of the JdbStatusLabel at relevant points in your program
programmatically, you can overwrite the current message displayed in
the JdbStatusLabel with your specified text. This text message, in turn, gets
overwritten when the next text is set or when the next DataSet status
message is generated. The status message can result from a navigation
through the data in the table, validation errors when editing data, and so
on.

Handling errors and exceptions
With programmatic usage of the DataExpress classes, most error handling
is surfaced through DataExpress extensions of the java.lang.Exception
class. All DataSet exception classes are of type DataSetException or its
subclass.

The DataSetException class can have other types of exceptions chained to
them, for example, java.io.IOException and java.sql.SQLException. In these
cases, the DataSetException has an appropriate message that describes the
error from the perspective of a higher level API. The DataSetException
method getExceptionChain() can be used to obtain any chained exceptions.
The chained exceptions (a singly linked list) are non-DataSetException
exceptions that were encountered at a lower-level API.

The dataset package has some built-in DataSetException handling support
for dbSwing data-aware components. The controls themselves don’t know
what a DataSetException is. They simply expect all of their data update and
access operations to work, leaving the handling of errors to the built-in
DataSetException.

U s i n g o t h e r c o n t r o l s a n d e v e n t s 16-5

H a n d l i n g e r r o r s a n d e x c e p t i o n s

For dbSwing data-aware components, the default DataSetException error
handling works as follows:

• If a control performs an operation that causes a DataSetException to
occur, an Exception dialog is presented with the message of the error.
This Exception dialog has a Details button that displays the stack trace.

• If the DataSetException has chained exceptions, they can be viewed in the
Exception dialog using the Previous and Next buttons.

• If the exception thrown is ValidationException (a subclass of
DataSetException), the Exception dialog displays only if there are no
StatusEvent listeners on the DataSet, for example, the JdbStatusLabel
control. A ValidationException is generated by a constraint violation, for
example, a minimum or maximum value outside specified ranges, a
data entry that doesn’t meet an edit mask specification, an attempt at
updating a read-only column, and so on. If a JdbStatusLabel control is
bound to a DataSet, it automatically becomes a StatusEvent listener. This
allows users to see the messages resulting from constraint violations on
the status label.

Overriding default DataSetException handling on controls

You can override part of the default error handling by registering a
StatusEvent listener with the DataSet. This prevents ValidationException
messages from displaying in the Exceptions dialog.

The default DataSetException handling for controls can be further disabled
at the DataSet level by setting its displayErrors property to false. Because
this is a property at the DataSet level, you need to set it for each DataSet in
your application to effectively disable the default error handling for all
DataSet objects in your application.

To completely control DataSetException handling for all dbSwing controls
and DataSet objects, create your own handler class and connect it to the
ExceptionEvent listener of the DataSetException class.

Most of the events in the dataset package throw a DataSetException. This is
very useful when your event handlers use dataSet APIs (which usually
throw DataSetException). This releases you from coding try/catch logic for
each event handler you write. Currently the JBuilder design tools do not
insert the “throws DataSetException” clause in the source java code it
generates, however you can add the clause yourself.

16-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C r e a t i n g a d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n u s i n g D a t a S e t D a t a 17-1

C h a p t e r

17
Chapter17Creating a distributed database

application using DataSetData
Database application

development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

The DataSetData.jpr sample project in the
/samples/DataExpress/StreamableDataSets directory of your JBuilder
installation contains a completed distributed database application using
Java Remote Method Invocation (RMI) and DataSetData. It includes a
server application that will take data from the sample JDataStore
employee table and send the data via RMI in the form of DataSetData. A
DataSetData is used to pass data as an argument to an RMI method or as an
input stream to a Java servlet.

A client application will communicate with the server through a custom
Provider and a custom Resolver. The client application displays the data in
a table. Editing performed on the client can be saved using a
JdbNavToolBar’s Save button.

For more information on developing distributed applications, see Part III,
“Distributed Application Developer’s Guide” in the Enterprise Application
Developer’s Guide.

For more information on writing custom providers, see “Writing a custom
data provider” on page 6-12. For information on writing or customizing a
resolver, see “Customizing the default resolver logic” on page 8-16.

See the file DataSetData.html in the /samples/DataExpress/StreamableDataSets/
directory for updated information on this sample application.

17-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e s a m p l e d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n

Understanding the sample distributed database application
(using Java RMI and DataSetData)

The sample project, found in
/samples/DataExpress/StreamableDataSets/DataSetData.jpr, demonstrates the
use of the DataExpress DataSetData class to build a distributed database
application. In addition to using DataSetData objects to pass database data
between an RMI server and client, this sample illustrates the use of a
custom DataSet Provider and Resolver. The sample application contains the
following files:

• Interface files

EmployeeApi.java is an interface that defines the methods we want to
remote.

• Server files

DataServerApp.java is an RMI server. It extends UnicastRemoteObject.

• Provider files

ClientProvider.java is an implementation of a Provider. The provideData
method is an implementation of a method in
com.borland.dx.dataset.Provider. We look up the “DataServerApp”
service on the host specified by the hostName property, then make the
remote method call and load our DataSet with the contents.

• Resolver files

ClientResolver.java is an implementation of a Resolver. The resolveData
method is an implementation of com.borland.dx.dataset.Resolver. First,
we look up the “DataServerApp” service on the host specified by the
hostName property. Then, we extract the changes into a DataSetData
instance. Next, we make the remote method call, handle any resolution
errors, and change the status bits for all changed rows to be resolved.

• Client files

ClientApp.java is an RMI client application. See ClientFrame.java for
details.

• Other files

Res.java is a resource file for internationalizing the application.

ClientFrame.java is the frame of ClientApp. Notice that the DataSet
displayed in the table is a TableDataSet with a custom provider and a
custom resolver. See ClientProvider.java and ClientResolver.java for
details.

DataServerFrame.java is the frame displayed by DataServerApp.

Chapter 17Understanding
the sample
distributed

database
application

Chapter 17Understanding
the sample
distributed

database
application

C r e a t i n g a d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n u s i n g D a t a S e t D a t a 17-3

U n d e r s t a n d i n g t h e s a m p l e d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n

Setting up the sample application

To run the sample application, you need to

1 Open this application in JBuilder by selecting File|Open and browsing
to /samples/DataExpress/StreamableDataSets/DataSetData.jpr.

2 Select Project|Project Properties to view the properties of this project.
Set the following options;

• Select the Run tab.

• Check that the “java.rmi.server.codebase” property passed to the
RMI server’s VM via a command-line argument points to the proper
location of the RMI server’s classes
(“file:/usr/local/jbuilder/samples/DataExpress/StreamableDataSe
ts/classes/” by default).

• Check that the “java.security.policy” property points to the
SampleRMI.policy file included with this project
(“file:/usr/local/jbuilder/samples/DataExpress/StreamableDataSe
ts/SampleRMI.policy” by default).

• Close the Project Properties dialog.

3 Start the RMI registry by selecting Tools|RMI Registry from JBuilder.
The registry is toggled on and off from the Tools menu.

4 Select the file DataServerApp in the project pane. Right-click the file, and
select Run to start the RMI server.

5 Select the file ClientApp in the project pane. Right-click the file, and
select Run to start the RMI client.

6 Edit the data in the ClientApp’s table, and press either the Save
Changes button on the toolbar (to save the changes back to the server)
or the Refresh button on the toolbar (to reload the data from the server).
Each time data is saved or refreshed, the middle-tier request counter
increases.

What is going on?
These steps enable the DataServerApp to register itself as an RMI server.
DataServerApp will respond to two RMI client requests: provideEmployeeData
and resolveEmployeeChanges, as defined in the RMI remote interface
EmployeeApi.java.

The ClientApp file is a frame with a JdbTable and a JdbNavToolBar for
displaying data in a DataExpress DataSet. Data is provided to the DataSet
via a custom Provider, ClientProvider.java, and data is saved to the source
via a custom Resolver, ClientResolver.java. ClientProvider.java fills its table
data by invoking the DataServerApp provideEmployeeData() remote method
via RMI. DataServerApp subsequently queries data from a table on a JDBC

17-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e s a m p l e d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n

database server into a DataSet. It then extracts the data from the DataSet
into a DataSetData object and sends it back to ClientProvider via RMI.
ClientProvider then loads the data in the DataSetData object into the
ClientApp DataSet, and the data appears in the table.

When it is time to resolve changes made in the table back to the database,
the ClientApp DataSet “custom Resolver”, ClientResolver.java, extracts
(only) the changes that need to be sent to the database server into a
DataSetData object. ClientResolver then invokes the DataServerApp
resolveEmployeeChanges() remote method via RMI, passing it the DataSetData
object containing the necessary updates as the parameter.

DataServerApp then uses DataExpress to resolves the changes back to the
database server. If an error occurs (due to a business rule or data
constraint violation, for example) DataServerApp packages rows which
could not be saved back to the database into a DataSetData object and
returns it back to ClientResolver. ClientResolver then extracts the
unresolvable rows in the DataSetData object into the ClientApp table,
allowing the problematic rows to be corrected and resolved back to the
server again.

Note that DataServerApp is the “middle-tier” of the application. It can
enforce its own business rules and constraints between the database
server and the client. And of course, it could provide any number of
additional remotely accessibly methods for implementing business logic
or application-specific tasks.

Passing metadata by DataSetData
The metadata passed in a DataSetData object is very limited. Only the
following Column properties are passed:

• columnName
• dataType
• precision
• scale
• hidden
• rowId

Other column properties that a server needs to pass to a client application,
should be passed as an array of Columns via RMI. The Column object itself is
serializable, so a client application could be designed to get these column
properties before it needed the data. The columns should be added as
persistent columns before the DataSetData is loaded.

Deploying the application on 3-tiers
To deploy the application on 3-tiers,

• Select DataServerApp.java in the project pane. Modify the database
connection URL in the constructor to point to a remote database

C r e a t i n g a d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n u s i n g D a t a S e t D a t a 17-5

U n d e r s t a n d i n g t h e s a m p l e d i s t r i b u t e d d a t a b a s e a p p l i c a t i o n

connection to which you have access. The database is the back end, or
third tier.

• Select Project|Make Project to recompile and update
DataServerApp.class.

• Deploy DataServerApp.class to a remote machine to which you are
connected. DataServerApp runs on the middle, or second, tier.

• Start the RMI Registry on the middle tier computer.

• Start DataServerApp on the middle tier.

Note Beginning with JDK 1.2, it is necessary to grant an RMI server special
security rights in order for it to listen for and accept client RMI requests
over a network. Typically, these rights are specified in a java security
policy file defined by a special property, java.security.policy, passed by
way of a command-line argument to the VM of the server. This is
similar to the java.rmi.server.codebase property which must also be
passed to the server’s VM.A sample RMI security policy file which will
allow an RMI client to connect to the server is included with this project
in the file SampleRMI.policy.

When starting DataServerApp on the middle-tier, make sure both the
java.security.policy and java.rmi.server.codebase properties are set to
the proper locations on the middle-tier machine.

• Double-click ClientFrame.java in the project pane of JBuilder to bring it
into the content pane. Select the Design tab to invoke the designer.
Select clientProvider1 in the component tree and modify the hostName
property to the hostname of the middle-tier machine.

• Select clientResolver1 and modify the hostName property to the hostname
of the middle-tier machine.

• Select Project|Make Project to rebuild ClientApp.

Start ClientApp on the client, or first tier, by right-clicking on the
ClientApp.java file in the project pane and selecting Run.

For more information
• Read the RMI Documentation on the Sun web site at

http://www.java.sun.com/products/jdk/1.2/docs/guide/rmi/index.html.

• Learn more about writing custom Providers and Resolvers by viewing
the sample data set application
/samples/DataExpress/CustomProviderResolver/CustomProviderRe
solver.jpr.

• Learn more about creating distributed applications in Part III,
“Distributed Application Developer’s Guide” in the Enterprise
Application Developer’s Guide.

17-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

D a t a b a s e a d m i n i s t r a t i o n t a s k s 18-1

C h a p t e r

18
Chapter18Database administration tasks

Database application
development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

This chapter provides information on how to accomplish some common
database administrator tasks. The following subjects are covered:

• Exploring database tables and metadata using the Database Pilot

• Using the Database Pilot for database administration tasks

• Monitoring database connections

Exploring database tables and metadata using the Database Pilot
The Database Pilot is a hierarchical database browser that also allows you
to edit data. It presents JDBC-based meta-database information in a
two-paned window. The left pane contains a tree that hierarchically
displays a set of databases and its associated tables, views, stored
procedures, and metadata. The right pane is a multi-page display of
descriptive information for each node of the tree. In certain cases, you can
edit data in the right pane as well.

18-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E x p l o r i n g d a t a b a s e t a b l e s a n d m e t a d a t a u s i n g t h e D a t a b a s e P i l o t

To display the Database Pilot, select Tools|Database Pilot from the
JBuilder menu.

Through a persistent connection to a database, the Database Pilot enables
you to:

• Browse database schema objects, including tables, table data, columns
(fields), indexes, primary keys, foreign keys, stored procedure
definitions, and stored procedure parameters.

• View, create, and modify database URLs.

• Create, view, and edit data in existing tables.

• Enter and execute SQL statements to query a database.

Browsing database schema objects

The Database Pilot window contains a menu, a toolbar, a status label, and
two panes of database information.

• The left pane displays a hierarchical tree of objects that include
database URLs, tables (and their columns, indexes, primary key, and
foreign keys), views, system tables, and stored procedures (and their
parameters).

An expand icon beside an object in the left pane indicates that the object
contains other objects below it. To see those objects, click the expand
icon. When an object is expanded to show its child objects, the expand
icon becomes a contract icon. To hide child objects, click the contract
icon.

D a t a b a s e a d m i n i s t r a t i o n t a s k s 18-3

E x p l o r i n g d a t a b a s e t a b l e s a n d m e t a d a t a u s i n g t h e D a t a b a s e P i l o t

• The right pane contains tabbed pages that display the contents of
objects highlighted in the left pane. The tabbed pages in the right pane
vary depending on the type of object highlighted in the left pane. For
example, when a database alias is highlighted in the left pane, the right
pane displays a Definition page that contains the database URL, Driver,
UserName, and other parameters, or properties. Bold parameter names
indicate a parameter that cannot be modified. All other parameters that
appear in the right pane can be edited there. The following tabbed
pages may appear in the right hand pane:

• Definition
• Enter SQL
• Summary
• Data

For more information, launch the Database Pilot by selecting Tools|
Database Pilot from the menu, then refer to its online book, Database Pilot.

Setting up drivers to access remote and local databases
The Database Pilot browses databases listed in the Connection URL
History List section of the <home>/.jdatastore/jdbcExplorer.properties
file. Additions are made to this list when you connect to a database using
the connection property editor of a Database component.

You can use the Database Pilot to view, create, and modify database
URLs. The following steps assume the URL is closed, and lists each task,
briefly describing the steps needed to accomplish it:

• View an URL

1 In the left pane, select the URL to view. The Definition page appears
in the right pane.

2 Click the expand icon beside a database URL (or double-click it) in
the left pane to see its contents.

• Create an URL

1 Select an URL or database in the left pane.

2 Right-click to invoke the context menu.

3 Choose New (or select File|New from the menu).

4 Select a Driver from the drop-down list or enter the driver
information. Drivers must be installed to be used, and the driver’s
files must be listed in the CLASSPATH statement in the JBuilder
setup script.

5 Browse to or enter the desired URL.

18-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E x p l o r i n g d a t a b a s e t a b l e s a n d m e t a d a t a u s i n g t h e D a t a b a s e P i l o t

6 On the Definitions page in the right pane, specify the UserName and
any other desired properties.

7 Click the Apply button on the toolbar to apply the connection
parameters.

• Modify an URL

1 Select the URL to modify in the left pane. The Definitions page
appears in the right pane.

2 Edit settings on the Definitions page as desired.

3 Click the Apply button on the toolbar to update the connection
parameters.

• Delete an URL

1 Select the URL to delete in the left pane.
2 Select File|Delete from the menu to remove the URL.

Note If you’re creating a new ODBC URL and you are running Windows NT,
you must define its ODBC Data Source though the Windows Control
Panel before you can connect to that database.

Executing SQL statements
The Enter SQL page displays a window in which you can enter SQL
statements, or specify and execute an existing .SQL file. The main part of
the screen is an edit box where you can enter SQL statements. To the right
of the edit box are three buttons, the Execute button, the Next button, and
the Previous button. When an SQL SELECT statement is executed, the
results of the query are displayed in an editable table, which is located
below the edit box. This screen may need to be resized to view all its
components. The page looks like this:

D a t a b a s e a d m i n i s t r a t i o n t a s k s 18-5

E x p l o r i n g d a t a b a s e t a b l e s a n d m e t a d a t a u s i n g t h e D a t a b a s e P i l o t

To query a database using SQL:

1 Open a database by selecting its URL in the left pane and entering user
name and password if applicable.

2 Select the database or one of its child nodes in the left pane.

3 Click the Enter SQL tab in the right pane to display an edit box where
you can enter or select an SQL statement.

4 Enter (or paste) an SQL statement in the edit box, or click the Load SQL
button and enter a SQL file name. If you enter non-SELECT statements,
the statement is executed, but no result set is returned.

5 Click the Execute button to execute the query.

You can copy SQL statements from text files, a Help window, or other
applications and paste them into the edit box. Some SQL servers require
that the table name be entered in quotation marks, some do not require
this.

Note If the SQL syntax you enter is incorrect, an error message is generated.
You can freely edit the Enter SQL field to correct syntax errors.

Using the Explorer to view and edit table data

Select the Data page to display the data in a selected table, view, or
synonym. You can enter and edit records in a table on the Data page if the
table permits write access, and if the Request Live Queries box of the
Query page of the View|Options menu is checked. The Data page
displays a table populated with the data from the selected table. A toolbar
control is displayed across the top of the table for navigation and data
modification. The Data page looks like this:

18-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

E x p l o r i n g d a t a b a s e t a b l e s a n d m e t a d a t a u s i n g t h e D a t a b a s e P i l o t

You can use the Database Pilot to view, edit, insert, and delete data in
tables. The following list of tasks briefly describes the steps needed to
accomplish each.

• View table data

1 Select a table to view in the left pane.

2 Click the Data page tab in the right pane to view a scrollable table of
all data in the table.

3 Use the toolbar buttons at the top of the table to scroll from record to
record.

• Edit a record

1 Make sure that Request Live Queries in the View|Options menu is
checked.

2 Edit the record’s fields in the table.

3 To post the edits to the local data set, select a different record in the
table, or click the toolbar’s Post button.

4 To cancel an edit before moving to another record, click the toolbar’s
Cancel button or press Esc.

5 To save your changes to the database, click the Save changes button.

• Insert a new record

1 Place the cursor on the row before which you wish to insert another
row.

2 Click the toolbar’s Insert button. A blank row appears.

3 Enter data for each column. Move between columns with the mouse,
or by tabbing to the next field.

4 To post the insert to the local data set, select a different record in the
table, or click the toolbar’s Post button.

5 To cancel an insert before moving to another record, click the
toolbar’s Cancel button or press Esc.

6 To save an insert to the database, click the Save changes button.

• Delete a record

1 Place the cursor on the row you wish to delete.

2 Click the toolbar’s Delete button.

Edits only take effect when they are applied. To apply edits and make
changes permanent:

• Click the Post button on the toolbar. This posts the changes to the local
data set only (not the database).

• Click the Save changes button to commit the edits to the database.

D a t a b a s e a d m i n i s t r a t i o n t a s k s 18-7

U s i n g t h e D a t a b a s e P i l o t f o r d a t a b a s e a d m i n i s t r a t i o n t a s k s

Using the Database Pilot for database administration tasks
This section provides an introduction to creating, populating, and deleting
tables in an SQL-oriented manner. These tasks are usually reserved for a
Database Administrator, but can easily be accomplished using JBuilder.

Creating the SQL data source

JBuilder is an application development environment in which you can
create applications that access database data, but it does not include menu
options for features that create SQL server tables. Typically, this is an
operation reserved for a Database Administrator (DBA). However,
creating tables can easily be done using SQL and the Database Pilot.

This topic is not intended to be a SQL language tutorial but to show you
how you can use SQL statements in JBuilder. For more information about
the SQL syntax, refer to any book on the subject. One commonly used
reference is A Guide to the SQL Standard by C.J. Date.

Note On many systems, the DBA restricts table create rights to authorized users
only. If you have any difficulties with creating a table, contact your DBA
to verify whether your access rights are sufficient to perform such an
operation.

To create a simple table, you must first set up a database connection URL.
If you are unfamiliar with how to do this, follow these steps:

1 Select Tools|Database Pilot.

2 From the Database Pilot, select File|New, or right-click an existing URL
and select New from the context menu. The New URL dialog displays.

3 Select a Driver from the drop-down list or enter the driver information.
For a discussion of the different types of drivers, see “JDBC database
drivers” in the Database Pilot online help.

4 Browse to or enter the desired URL. The Browse button will be enabled
when a database driver that is recognized by JBuilder is selected in the
Driver field.

5 Click OK to close the dialog.

6 On the Definitions page in the right pane, specify the UserName and
any other desired properties.

7 Click the Apply button on the toolbar to apply the connection
parameters.

Once a connection has been established, you can specify a SQL statement
to run against the database. There are two ways to do this. The first way is
through the Create Table dialog. To create a table called mytable using the
Create Table dialog,

18-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U s i n g t h e D a t a b a s e P i l o t f o r d a t a b a s e a d m i n i s t r a t i o n t a s k s

1 Select File|Create Table in the Database Pilot.

2 Type mytable in the Table name field.

3 Click the Insert button.

4 Type lastName in the Column name column.

5 Select VARCHAR as the Data type column value.

6 Type 20 in the Precision column.

7 Click the Next row button. A new row is created.

8 Type firstName in the Column name column.

9 Select VARCHAR as the Data type column value.

10 Type 20 in the Precision column.

11 Click the Next row button. A new row is created.

12 Type salary in the Column name column.

13 Select NUMERIC as the Data type column value.

14 Type 10 in the Precision column.

15 Type 2 in the Scale column.

16 Click the Execute button.

17 Note that an SQL statement has been created for you in the SQL text area.

18 Click OK. The table is created in the currently open data source.

The second way to create a table is to specify a CREATE TABLE SQL statement
in the Enter SQL tab. For example, to create a table named mytable2 on the
data source to which you are connected,

1 Click the Enter SQL tab in the Database Pilot.

2 Enter the following in the text area:
create table mytable2 (
lastName char(20),
firstName char(20),
salary numeric(10,2))

3 Click the Execute button.

These steps create an empty table which can be used in a query. Use the
Database Pilot to verify that the table was created correctly. You should see:

• a list of tables in the data source, including the new table (MYTABLE)
just created.

• a list of columns for the selected table. Select MYTABLE and the
columns list displays FIRSTNAME, LASTNAME and SALARY.

D a t a b a s e a d m i n i s t r a t i o n t a s k s 18-9

M o n i t o r i n g d a t a b a s e c o n n e c t i o n s

Populating a SQL table with data using JBuilder

Once you’ve created an empty table, you can easily fill it with data using
the Database Pilot (in this example), or by creating an application using
JBuilder’s visual design tools. Select the Data page to display the data in a
selected table, view, or synonym. You can enter and edit records in a table
on the Data page of the Database Pilot if the table permits write access,
and if Request Live Queries is checked in the View|Options dialog box.
The Data page displays a table populated with the data from the selected
table.

1 Follow the steps for “Creating the SQL data source” on page 18-7.

2 Select the table you just created in the left window, then select the Data
tab in the right window. A table populated with the data from the
selected table displays in the right pane. A toolbar control is displayed
across the top of the table for navigation and data modification.

3 You can now use the Database Pilot to view, edit, insert, and delete
data in tables. See “Using the Explorer to view and edit table data” on
page 18-5 for more information on these tasks.

Deleting tables in JBuilder

Now that you’ve created one or more test tables, you’ll need to know how
to clean up and remove all the test tables. Follow the steps for “Creating
the SQL data source” on page 18-7 but substitute the following SQL
statement:

drop table mytable

You can verify the success of this operation by checking to see if the table
still displays in the left window of the Database Pilot.

Monitoring database connections
JBuilder provides a JDBC monitoring class which can monitor JDBC
traffic. JBuilder provides a user interface, invoked from Tools|JDBC
Monitor, to work with this class at design time. For information on using
this class at run time, see “Using the JDBC Monitor in a running
application” on page 18-10.

JDBC Monitor will monitor any JDBC driver (i.e., any subclass of
java.sql.Driver) while it is in use by JBuilder. The JDBC Monitor monitors
all output directly from the JDBC driver.

18-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

M o n i t o r i n g d a t a b a s e c o n n e c t i o n s

Understanding the JDBC Monitor user interface

To start the JDBC Monitor, select Tools|JDBC Monitor. The JDBC Monitor
displays:

How to use the JDBC Monitor:

• Click the JDBC Monitor window’s close button to close the JDBC
Monitor.

• Select text in the log area by highlighting it with the mouse or
keyboard.

• Click the Save To File button to save the selected text (or all text, if
nothing has been selected) to a file.

• Click the Clear Log button to clear the selected text (or all the text, if
nothing has been selected).

• Click the Enable Log Output check box to enable/disable log output.

• Click the Log Size button to set the maximum amount of logging
information to keep (8K by default).

• With the cursor in the text area, press F1 or the Help button to display
JDBC Monitor help. Help is available in design mode only.

Using the JDBC Monitor in a running application

To monitor database connections at run time, a MonitorButton or a
MonitorPanel must be included with the application. MonitorButton is a Java
bean which allows you to run the JDBC monitor against a running
application. To do so, the instance of the JDBC monitor in use must be
brought up by the application. An instance of the JDBC Monitor brought
up from the IDE will only monitor database activities during design time.

D a t a b a s e a d m i n i s t r a t i o n t a s k s 18-11

M o n i t o r i n g d a t a b a s e c o n n e c t i o n s

Pressing the Monitor button displays a dialog containing the JDBC
Monitor.

The MonitorPanel can be used to place the monitor directly on a form. It has
the same properties as the MonitorButton.

Adding the MonitorButton to the Palette
The MonitorButton can be put on the component palette by following these
steps:

1 Select Tools|Configure Palette.

2 Select Data Express from the Pages field on the Pages tab.

3 Select the Add Components tab.

4 Select JBCL 3.1 in the Select Library field.

5 Click Install.

6 Browse to com.borland.jbcl.sql.monitor.MonitorButton.

7 Click OK to close the dialog.

Using the MonitorButton Class from code
When the MonitorButton is added to the palette, it can be dropped on to
your application. You could also add an instance of the MonitorButton in
code, as follows:

MonitorButton monitorButton1 = new com.borland.jbcl.sql.monitor.MonitorButton();
this.add(monitorButton1);

Understanding MonitorButton properties
The following component properties are available on MonitorButton to
control the default state of the monitor:

Property Effect

outputEnabled Turns Driver trace on/off.
maxLogSize Maximum trace log size. Default is 8K.

18-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S a m p l e d a t a b a s e a p p l i c a t i o n 19-1

C h a p t e r

19
Chapter19Sample database application

Database application
development is a feature
of JBuilder Professional

and Enterprise.
Distributed application

development is a feature
of JBuilder Enterprise.

This chapter describes a sample database application developed using
DataExpress components and the JBuilder design tools. Where necessary,
the code generated by the design tools was modified to provide custom
behavior. There are no tutorial steps on this application as it is intended to
consolidate the individual how to topics discussed elsewhere in this book.

The completed files for this sample application are included in the
/samples/DataExpress/BasicApp subdirectory of your JBuilder
installation under the project name BasicApp.jpr. The file BasicApp.html
contains updated information on this sample application. If you
experience problems running this application, see “JBuilder sample files”
on page 3-2 for information critical to this process. (If you downloaded
JBuilder, you also need to download the Samples Pack in order to have
this sample.)

Note Some of the samples run only with JBuilder Enterprise.

This application demonstrates the following functionality:

• Connects to the JDataStore sample database, employee.jds, using the
Database and QueryDataSet components. (See Chapter 4, “Connecting to a
database” and “Querying a database” on page 5-14.)

• Contains a JdbTable which displays the the data while also
demonstrating the following features:

• Persistent columns, which are columns where structure information
typically obtained from the server is specified as a column property
instead. This offers performance benefits as well as persistence of
column-level properties. (See “Persistent columns” on page 7-7 for
more information on this feature.) In the designer, double-click the
data set to open the Column designer to view more information on
each column.

19-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

S a m p l e i n t e r n a t i o n a l d a t a b a s e a p p l i c a t i o n

• Formatting of the data displayed in the JdbTable using display masks
(the HIRE_DATE column). (See “Adding an Edit or Display Pattern
for data formatting” on page 14-15.)

• Data editing that is controlled using edit masks (the HIRE_DATE
column). (See “Adding an Edit or Display Pattern for data
formatting” on page 14-15.)

• Calculated and aggregated fields which get their values as a result of
an expression evaluation (the NEW_SALARY, ORG_TOTAL,
NEW_TOTAL, DIFF_SALARY, AND DIFF_TOTAL columns). (See
“Using calculated columns” on page 14-7.)

• Includes a JdbStatusLabel control that displays navigation information,
data validation messages, and so on. Messages are written to the
JdbStatusLabel control when appropriate, or when instructed
programmatically. (See “Displaying status information” on page 16-2.)

• Displays a JdbNavToolBar for easy navigation through the data displayed
in the table.

• Lets you locate data interactively using a JdbNavField which is
embedded in the JdbNavToolBar. For more information on locating data,
see “Locating data” on page 13-14.

• Uses a DBDisposeMonitor to automatically close the database connection
when the frame is closed.

• Resolves changes made to the data in the QueryDataSet by using default
resolver behavior. (See “Saving changes from a QueryDataSet” on
page 8-2.) The Save button of the JdbNavToolBar performs the save.
Messages regarding the resolve process are displayed in the
JdbStatusLabel control.

Sample international database application
Writing an international application involves additional complexities
which impact application development, for example, using locales other
than en_US (American English). For an example of an international
database application that includes many common features of a database
application in addition to support for multiple languages and locales, see
the /samples/dbSwing/MultiLingual directory of your JBuilder
installation. (If you downloaded your JBuilder, you also need to
download the Samples Pack in order to have this sample.)

D a t a b a s e F A Q A-1

A p p e n d i x

A
Appendix ADatabase FAQ

The database FAQ, a document comprised of answers to questions posted
on the JBuilder Database newsgroup, is posted on the Borland web site.
The most current version of this document is available on the Borland
Community Web site at http://community.borland.com/, as of this printing.

This document may also be posted on the newsgroup and updated there
periodically. If you do not find what you are looking for in this document,
post a question to the newsgroup borland.public.jbuilder.database. To
access the Database newsgroup, point your browser to
http://www.borland.com/newsgroups/#jbuilder, and select
borland.public.jbuilder.database.

A dbSwing FAQ is located on the dbSwing newsgroup. If you do not find
what you are looking for in this document, post a question to the
newsgroup borland.public.jbuilder.dbswing. To access the dbSwing
newsgroup, point your browser to
http://www.borland.com/newsgroups/#jbuilder, and select
borland.public.jbuilder.dbswing.

A JDataStore FAQ is located on the Borland Community Web site at
http://community.borland.com/. If you do not find what you are looking for
in this document, post a question to the newsgroup
borland.public.jbuilder.jdatastore. To access the JDataStore newsgroup,
point your browser to http://www.borland.com/newsgroups/#jbuilder, and
select borland.public.jbuilder.jdatastore.

Borland provides newsgroups as a user-supported area in which to
exchange information, tips, and techniques on our products for the global
community of Borland and Inprise customers.

We encourage members of this community to assist each other with
technical questions. We have established a special relationship with a
group of volunteers known as TeamB. TeamB members come from a wide

A-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

D a t a b a s e F A Q

range of backgrounds and professions, with a willingness to give their
time, expertise, and advice to enhance the technical skills of other
customers. This forum is often visited by JBuilder R&D and QA engineers,
as well as Borland Developer Support, however, Borland does not offer
any formal support in these newsgroups, except for questions on product
installation.

I n d e x I-1

Symbols
? as JDBC parameter marker 5-33

A
accessing data 4-1, 5-1

from custom data sources 6-12
from data module 11-1
from UI components 16-2
JDBC data sources 4-1

accessing model information 16-2
adding columns

for internal purposes 7-9
to imported text files 10-4
to parameterized queries 5-33

adding components
to data modules 11-3

adding parameters to queries 5-27
agg property editor 14-14
AggDescriptor objects 14-14
aggregating data 14-1

creating aggregated columns 14-10, 14-14
customizing aggregation methods 14-15
tutorial

aggregated columns 14-11
Aggregating sample 14-11
Application Generator 11-18
application structure

developing 5-5
Application wizard

in tutorial 5-5
applications

client-server 11-8
database (2-tier) 11-8
developing

text file 5-5
generating 11-18

Apply button 11-13
ascending sort order 11-14
ASCII files See text files

B
BasicApp sample 19-1
binding parameter values 5-34
boolean data

patterns 14-21
boolean patterns 14-15

examples of 14-18
bundling resources 5-22
business logic 11-1, 11-4

C
caching data 12-1
calculated columns 14-1, 14-7, 14-10

aggregating data in 14-14
aggregation 14-10, 14-11
creating lookups with 14-2, 14-5
creating picklists with 14-3
tutorial 14-8
types supported 14-7

CalculatedColumn sample 14-8
cascadeDeletes 9-3
cascadeUpdates 9-3
client-server applications 11-8

creating 11-8
closing data sets 5-26
coding events

for data modules 11-4
colors 7-1
Column component 5-4, 14-26

formatter property
using 14-26

locale property 10-8
manipulating 14-24
overview 2-8, 7-1
persistent 14-23, 14-24
setting properties 14-23, 14-24
specifying as persistent 7-7
storing Java objects in 14-26
using 5-4
viewing 14-23

Column designer 7-2, 14-23, 14-24
enabling 7-2
metadata options 7-4
RowIterator Generator button 7-3

column order
locating data 13-19

Column properties
for multiple table queries 8-13

column properties 5-4
columns 5-4, 7-1, 7-7

adding to StorageDataSets 7-9
calculated 14-1
changing properties for 7-2
controlling order of 7-10
definitions, in SCHEMA files 10-6
exploring 18-1
filtering data in 13-1
linking on common 9-2
lookup values in See lookup columns
metadata 5-4

Index

I-2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

persistent columns 5-4
properties 5-4
setting persistent properties for 7-6
setting properties for 7-1, 7-2
sorting 13-1
viewing information 7-2, 7-5
working with 7-1

com.borland.datastore package 2-6
com.borland.dx.dataset package 2-6
com.borland.dx.sql.dataset package 2-6
comma-delimited text files 10-2

importing 10-2
common fields 9-1
components

DataExpress 5-2
JFC data-aware 16-1
synchronizing 16-1

.config files
creating for drivers 3-7

connecting to DataExpress component 5-12
connection pooling 4-10
connection problems

solutions 4-9
connections 3-2, 4-1

overview 4-1
troubleshooting 3-9
tutorial 4-2

constraints
enabling 13-12

controlling user input 14-17
controls 16-1
cost of goods 14-15
Create ResourceBundle dialog 5-22
creating master-detail relationships 9-1, 9-5
creating queries 5-14

tutorial 5-16
creating SQL tables 18-7
cursors

shared 16-1
custom providers 6-12
custom resolving 8-17

D
data 5-1

accessing 13-2
alternate view of 14-22
caching 12-1
editing 18-5
exploring 18-9
exporting 10-5

from a QueryDataSet 10-10
extracting from a data source 5-1
filtering 13-1
finding 13-14
importing 5-4

inserting 18-9
loading 6-14
locating 13-1, 13-14, 13-16, 13-17
modifying 18-9
persistent 14-23
persisting 12-1
providers 5-1
providing 5-1, 6-14
relationships

1-to-1 8-12
required 14-24
resolving 8-1, 8-2

customizing 8-20
stored procedures 8-5

resolving data
default behavior 8-17

retrieving 5-1, 5-16, 6-12, 13-2
sorting 13-1
storing 12-1
viewing 18-5

data constraints
enabling 13-12

data fields
exporting 10-8

data filters 13-5
tutorial 13-6

data groups 14-10
data input

patterns 14-1
data members

nontransient 8-15
private 8-15

Data Modeler
2-tier applications 11-8
client-server applications 11-8
creating queries 18-2

data models 11-1
data modules

adding business logic 11-4
adding components 11-3
adding to libraries 11-5
class files 11-5
compiling 11-5
creating 11-2, 11-8
referencing 11-5, 11-7
saving 11-5
using 11-5, 11-7
using generated 11-19
wizards 11-2, 11-7

Data page
Database Pilot 18-5

data patterns 14-15
examples of 14-18

data providers 5-1
data retrieval enhancements 5-24

I n d e x I-3

data sets
binding parameter values 5-34
closing 5-26
enhancing performance 5-24
explicitly opening 5-26
linking 9-1
opening 6-14
returning as read-only 5-26
streamable 8-14

data sources
accessing 5-1
connecting to 3-2
updating 8-16

data streams
storing 12-1

data summaries 14-10, 14-11
data tables

displaying detail link columns 9-4
data types

variant 14-26
data-aware components 16-1

default data display 7-2
displaying columns in 14-23

database
functionality

setting up 3-1
database administration 18-1, 18-7
database applications 2-1

creating 13-2
distributed 17-1
errors 3-9
generating 11-18
introduction 2-1

Database component 4-1, 4-3
overview 4-1
tutorial 4-3
using 4-3

Database components
DataExpress

architecture 2-1
overview 2-6

database connections
monitoring 18-9, 18-10
pooling 4-10

database drivers
adding to JBuilder 3-7
adding to project 3-8
all-Java 3-4
setting up 18-3

Database field
in QueryDescriptor 5-20

database newsgroups A-1
Database Pilot 7-5

Data page 18-5, 18-9
database drivers

setting up 18-3
Enter SQL page 18-4
using 18-1
viewing column information 7-5
window 18-2

database sample files
installing 3-2

database samples
for Unix users 3-3

database servers
communicating with 2-1

database tutorials 8-16, 19-1
adding status information 16-3
alternate views 14-22
calculated aggregations 14-11
calculated columns 14-8
creating lookups 14-5
creating picklists 14-3
creating queries 5-16
creating stored procedures 6-3, 6-8
exporting data 10-6
filtering data 13-6
importing comma-delimited data 10-2
importing formatted data 10-4
international application 19-2
JDBC connections 4-2
locating data 13-14
master-detail relationships 9-6
parameterizing queries 5-27
QueryDataSet components

resolving changes 8-2
reading from text files 5-4
ResolverEvents 8-19
resolving ProcedureDataSets 8-5
setting up 3-1
setting up JDataStore 3-4
setting up under Unix 3-3
sorting data 13-10
StreamableDataSets 17-3
using dbSwing components 15-2
viewing column information 7-2

database-related packages 2-6
databases 4-3

connecting to 3-2, 4-3
connecting via JDBC 8-2
connections

troubleshooting 3-9
deploying 3-8
exploring 18-1
in distributed applications 17-1
indexes 18-1
information

displaying 18-2
local

accessing 18-3

I-4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

properties (tutorials) 13-1, 14-1
querying 5-19
remote

accessing 18-3
technical assistance with A-1
troubleshooting A-1
UI 13-1, 14-1

DataExpress
applications 2-1
architecture 2-1, 2-4

DataStore 12-1
components 2-4, 2-6, 5-1

accessing data with 5-1
tutorial for adding 5-7, 5-8

connecting to UI component 5-12
overview 5-2
tutorials 5-2

DataExpress Component Library
described 2-1

DataModule interface
customizing 11-3
discussed 11-1
overview 2-9
referencing 11-7

DataRow class
locating data 13-17

DataRow component
column order in locates 13-19
overview 2-8
using to locate data 13-16

DataSet
caching in DataStore 12-1
filtering data in 13-1
functionality 2-4
locating data in 13-1
persisting in DataStore 12-1
saving changes 8-1
sorting data in 13-1
storing Java objects 14-26
streamable

serializable 8-14
with RMI 8-14

DataSet class
overview 2-6
using 5-3

DataSet package 2-6
DataSetData

extractDataSet method 8-15
using 8-14

extractDataSetChanges method 8-15
metadata

passing 17-4
populating 8-15
sample application, described 17-2
tutorial 17-1

DataSetData objects 8-14
DataSetData sample application 17-1
DataSetData.jpr

running 17-3
DataSetException 16-4
DataSetView component

overview 2-8
sorting in 13-9
using 14-1

DataStore
creating 12-3
data streams 12-1
database files

accessing 5-3
operations 12-3
overview 2-7
using 12-1
verifying 12-3
when to use 12-1

DataStore Explorer 12-2
DataStore package 2-6
DataStoreDriver component

overview 2-7
date data

patterns 14-19
dates

importing 10-4
DBA 18-7

tasks 18-1
dbSwing

creating database UI using 15-1
FAQ A-1

dbSwing components
creating database UI 15-1
sample applications using 15-2
tutorial 15-2
using 16-1

dbSwing sample applications
MultiLingual 19-2

Default project
adding database drivers 3-8

defaults 7-2
data display 7-2

Delay Fetch of Detail Records Until Needed 9-3
delete procedures

custom 8-9
deleteProcedure property 8-8
deleting persistent columns 7-8
deleting tables 18-9
delimiters 5-2
deployment

of JDBC drivers 3-8
descending sort order 11-14
designing applications 5-9

I n d e x I-5

detail records
fetching 9-3

detail tables 9-2
editing 9-4

developing projects 5-5
development FAQs A-1
discounts 14-15
display masks 14-1, 14-17

adding 14-15
displaying data

in data-aware components 7-2
displaying special characters 14-17
displaying status information 16-2
distributed database applications 17-1
distributed objects

database 17-1
documentation conventions 1-5
driver manager 4-1
drivers

adding database drivers to project 3-8
adding JDBC driver 3-7

drivers, databases, setting up 18-3

E
edit masks 14-1

adding 14-15
editMask property 14-17

edit/display masks 14-1
editing

blocking 15-5
editing data

controlling user input 14-17
master-detail 9-4

enableDelete property
of DataSetView 14-22

enableInsert property
of DataSetView 14-22

enableUpdate property
of DataSetView 14-22

Enter SQL page
Database Pilot 18-4

errors
handling 16-4
in database 3-9

escape sequences 6-7
event handlers

custom aggregation 14-15
events

adding business logic 11-4
resolver 8-16

examples
stored procedures 6-10, 6-11

exceptions 16-4
handling 16-4

Execute Query command 11-15
export masks 14-15, 14-17
exportDisplayMask 14-17

property
example 10-8

exporting data 10-5
from a QueryDataSet 10-10
to text files 10-1
using patterns 10-8

extractDataSet method 8-15
extractDataSetChanges method 8-15
extracting data 5-1

F
FAQ A-1

database A-1
dbSwing A-1
JDataStore A-1

fetchAsNeeded 9-3
fetching data 5-14

detail records 5-35, 9-3
from JDBC data sources 10-5
from JDBC sources 6-1
optimizing 5-24

fetching detail records 9-3
field separators 5-2
fields

databases
exploring 18-1

linking on common 9-2
required 14-24

filtering data 13-1, 13-5
tutorial 13-6

FilterRows sample 13-6
flat file databases 10-1
formatted text files 10-4

importing 10-4
formatter property

using 14-26
formatting data 14-15

display masks for 14-17

G
generating applications 11-18
Group By clause 11-12
Group By page

Data Modeler 11-12
grouping data 14-10

H
handling errors 16-4
handling exceptions 16-4

I-6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

I
import masks 14-15, 14-17
importing data 5-3, 12-3

file-based data 5-3
from text files 10-1
TextDataFile sample 5-4
tutorial 5-4
tutorials for 10-2, 10-4

indexes
database 18-1
unique vs. named 13-12

insert procedures
custom 8-9

insertProcedure property 8-8
insertRow() method 6-14
installing

InterClient 3-4
JDataStore Server 3-4
sample files 3-2

InterBase
about 3-4
setting up for JBuilder 3-4
tips 3-6

InterBase stored procedures
example 6-10
return parameters 8-11

InterClient
about 3-4
connection errors 4-9
installing 3-4
setting up for JBuilder 3-4
setting up in JBuilder 3-7
using JDBC drivers 4-6

INTERNALROW 8-14, 8-15
Internet

developing client-server applications 3-4
InterServer 3-4
Intranet

developing client-server applications 3-4

J
Java

data 3-4
objects containing DataSets 8-14
RMI with databases 17-1
server applications

responding to client requests 8-14
Java data modules

saving queries 11-17
Java interfaces

developing with InterClient 3-4
JBCL components

data-aware 16-1
jbInit() method 11-19

JBuilder
database functionality 3-1

JDataStore
FAQ A-1
installing local server 3-4
when to use 5-2

JDataStore JDBC drivers 3-4
JDataStore Server

installing 3-4
JDBC 8-2

connection errors 3-9
pooling connections 4-10

JDBC API 2-1, 4-1
JDBC connections 4-1

managing 2-6
manipulating traffic 18-9
monitoring 18-9
overview 4-1
tutorial 4-2

JDBC data sources 5-1, 6-1, 10-5
accessing 4-1, 5-1
from text files 10-11
saving text file data 10-11

JDBC driver
adding to JBuilder 3-7
adding to project 3-8

JDBC drivers 3-1, 3-2
adding to JBuilder 3-7
InterClient 4-6
JDataStore JDBC drivers 3-4
setting up 3-4
when to use 5-2

JDBC escape sequences 6-7
JDBC Monitor 18-9

in applications 18-10
using 18-9

JdbNavField component 13-14
example 13-14

JdbStatusLabel component 16-3
tutorial 16-3

JdbTable
blocking editing 15-5

JdbTable component
sorting in 13-9

JFC components 16-1
joining tables 9-1

L
libraries

adding to project 11-5
creating 3-7
required 11-5

Link Queries dialog box 11-16
linked tables

types 8-12

I n d e x I-7

linking data sets 9-1
load opt 5-20
Load Options field

in QueryDescriptor 5-20
loading data 6-14
Local InterBase Server 3-6
locale property 10-8
locale-specific resources 5-22
locate method 13-16
LocateOptions class 13-17
locating data 13-1, 13-14, 13-17

column order 13-19
interactive 13-14
locate options 13-17
programmatically 13-16
variants 13-19

lookup columns 14-2
creating 14-2
tutorial 14-5

lookup lists 14-1

M
manipulating JDBC traffic 18-9
many-to-many data relationships 8-12
many-to-one data relationships 8-12
masks 14-1

for data formats 14-17
for editing 14-17
for importing/exporting 14-17

master tables 9-2
editing 9-4

masterDataSet 9-5
master-detail relationships 11-16

creating 9-1, 9-5
defining 9-2
queries 5-35
resolving 9-10

custom 8-21
tutorial 9-6

MasterDetail sample 9-6
masterLink 9-2
MasterLinkDescriptor class

usage overview 9-2
metadata 7-1

discovery 7-1
exploring 18-1
obtaining 6-13
persisting 5-25, 7-4
setting as dynamic 7-4
updating in persistent columns 7-8
viewing 7-5

metaDataUpdate property
with multiple tables 8-13

middle-tier server implementations 8-14

models
accessing information about 16-2

MonitorButton
adding to palette 18-11
properties 18-11
using 18-11

monitoring connections 18-9, 18-10
monitoring JDBC drivers 18-9
multi-column locates

column order 13-19
MultiLingual sample application 19-2
multi-table resolution 8-11

resolution order 8-14

N
named indexes 13-12
named parameters 5-33
navigating

multiple data sets 16-1
synchronizing components 16-1

New Data Module Wizard 11-2
newsgroups

database support A-1
nontransient data members 8-15
non-visual components 5-7

setting properties 5-8
numeric data 10-4

importing 10-4
patterns 14-18

numeric fields
exporting 10-8

numeric patterns 14-15
examples of 14-18

O
objects

containing DataSets 8-14
Java 14-26
storing 14-26

one-to-many relationships 8-12, 9-1
one-to-one relationships 8-12
opening data sets 5-26
optimizing data retrieval 5-24
Oracle PL/SQL stored procedures

example 6-10
Order By clause

adding 11-14
Order By page 11-14

P
packages

database-related 2-6
parameter markers 5-33

I-8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

parameterized queries 5-27, 11-13, 11-15
adding columns 5-33
binding values 5-34
for master-detail records 5-35
supplying new values 5-35
tutorial 5-27

ParameterRow 5-28
ParameterRow component 5-33

overview 2-9
parameters

return 8-11
specifying 5-21

Parameters tab
QueryDescriptor 5-21

parsing data 14-15
parsing strings 14-17
PARTIAL option

multi-column locates 13-19
password

prompting for 4-9
Paste Column button 11-13
Paste Parameter button 11-13
patterns 14-1, 14-15

boolean data 14-21
date data 14-19
examples of 14-18
for data entry 14-17
for exporting data 10-8
numeric data 14-18
string data 14-20
time data 14-19

performance 5-24
Persist all Metadata option 7-4
persistence 12-1
persistent columns 14-24

adding 7-9
controlling metadata update with 7-8
deleting 7-8
overview 7-7

persistent data 14-23
persisting data 12-1
picklists 14-1, 14-2

removing 14-4
tutorial 14-3

Place SQL Text In Resource Bundle
in QueryDescriptor 5-20, 5-22

populating SQL tables 18-9
private data members 8-15
procedure calls 5-3

server-specific 6-7
ProcedureDataSet

resolving data 8-6
saving changes to 8-9

ProcedureDataSet component 5-3
about 6-1

overview 2-7
sorting in 13-9
tutorial 6-3, 6-8
using 5-3

ProcedureDataSet components
DataExpress

architecture 2-1
tutorial

resolving 8-5
ProcedureResolver 8-1

properties 8-8
using 8-5, 8-6

ProcedureResolver component
coding 8-8
tutorial 8-9

procedures 5-3
resolving 8-5
stored

running 5-3
Project wizard

in tutorial 5-5
projects

developing 5-5
prompting

user name and password 4-9
properties

non-visual components 5-8
provideData method 6-14
ProviderHelp

initData method 6-14
providers 5-3

creating custom 6-12
custom 5-3, 17-1
of data 5-1

providing (defined) 6-1
providing data 5-3

for database examples 13-2
from JDBC sources 6-1
using custom provider 5-3
with parameterized queries 5-27

Q
queries 5-3, 5-14

building 5-19
containing WHERE clause 8-12
creating 18-2
creating parameterized 5-27
creating with Data Modeler 11-8
editing directly 11-15
ensuring updateability 5-26
executing 18-4
Group By clause 11-12
master-detail 11-16

I n d e x I-9

multiple in Data Modeler 11-16
on multiple tables 8-12

column properties 8-13
optimizing 7-6
overview 5-14
parameterized 5-3, 11-13, 11-15
required components 5-14
saving to data module 11-17
saving to Java data modules 11-17
sort order 11-14
SQL

Database Pilot 18-4
testing 11-15
tutorial 5-16, 13-2
viewing results 11-15
Where clause 11-13

query property
parameters 5-21
understanding 5-20

query property editor 5-19
query statements 5-3

running 5-3
Query tab 5-20
QueryDataSet 5-29

saving changes 8-3
QueryDataSet component 2-7

exporting to a file 10-5, 10-10
overview 5-14, 5-24
query property setting 5-19
sorting in 13-9
tutorial 5-16, 5-27
using 5-3

QueryDataSet components
DataExpress

architecture 2-1
tutorial 8-2

QueryDescriptor
Parameters tab 5-21
Place SQL text in resource bundle option 5-22
Query page 5-20
visual 5-19

QueryProvider
for multiple table queries 8-13

QueryProvider sample 5-16
QueryResolver 8-1

saving changes with 8-6
with stored procedures 8-6

QueryResolver component
adding 8-17
customizing 8-16, 8-17
events, controlling 8-17
intercepting events 8-17

QueryResolver components
default 8-17

R
read-only data sets 5-26
reconciling data 8-1
relational databases 9-1
remote databases

connecting to 3-2
remote servers 4-1
removing persistent columns 7-8
required data 14-24
resolution order

specifying 8-14
resolution process

controlling 8-17
ResolutionManager class 8-16
resolveOrder property 8-11, 8-14
resolver events 8-16
ResolverEvents sample application 8-19
ResolverListener 8-17
ResolverResponse 8-17
resolvers

custom 8-1, 8-17, 8-20, 17-1
default 8-17

resolving
tutorial 8-6, 8-8, 8-9

resolving data 8-1, 8-2, 8-16, 8-20
customizing events 8-17
customizing resolver logic 8-17
default 8-17
master-detail relationships 9-10
multiple tables 8-11
QueryDataSets 8-3
stored procedures 8-5

resource bundles 5-20, 5-22
Resourceable SQL 5-22
retrieving data 4-1, 5-1, 5-16, 6-12, 13-2

from a data module 11-1
from data sources 8-16
through stored procedures 6-1

return parameters 8-11
RMI

with databases 17-1
RowFilterListener interface

tutorial 13-6
rowID property

using 8-13
RowIterator 7-3

using 7-3

S
sales tax 14-15
sample applications 19-1

database 3-2
DataSetData 17-2
international locales 19-2

I-10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

ResolverEvents 8-19
samples

for Unix users 3-3
running 3-2

saveChanges() method
and rowID property 8-13

saving changes 8-2, 8-5, 8-16
master-detail relationships 9-10
to QueryDataSets 8-3

saving data 8-1
multiple tables 8-11
tutorial 8-6, 8-8, 8-9

SCHEMA files 10-4, 10-6
and exportDisplayMasks 14-17

schemaName property 8-11
Selected Sort Order Direction options 11-14
serializing objects 8-14
setResolver 8-17
shared cursors 16-1
SimpleStoredProcedure sample 6-3, 6-8, 8-6
sort order 13-12

SQL queries 11-14
sort property editor 13-10
sorting data 13-1, 13-9

in tables 13-9
programmatically 13-13
sort order 13-12
with design tools 13-10
with master-detail relationships 9-2

sortOnHeaderClick 13-9
special characters 14-17
specifying resolution order 8-14
SQL Builder 5-19
SQL connections 4-1
SQL databases

connecting to 3-2
SQL queries 5-14

adding parameters 5-27
editing directly 11-15
ensuring updateability 5-26
Group By clause 11-12
master-detail 11-16
multiple in Data Modeler 11-16
optimizing 7-6
overview 5-14
required components 5-14
resourceable 5-22
saving to data module 11-17
saving to Java data modules 11-17
sort order 11-14
testing 11-15
tutorial 5-16
view results 11-15
Where clause 11-13

SQL server connections
troubleshooting 3-9

SQL servers
connecting to See SQL connections

SQL Statement field
in QueryDescriptor 5-20

SQL statements
defining 5-19
discussion of 6-7
encapsulating 6-1
executing 18-4

SQL tables 5-3
creating 18-7
deleting 18-9
from text files 10-10
populating 18-9
querying 5-3
saving text file data 10-10
updating 8-1

SqlRes class 5-22
SQLResolver 8-1, 8-16

customizing 8-17
using with multiple tables 8-11

status information 16-2
status label

adding to applications 16-2
StatusEvent listener 16-4
StorageDataSet class

overview 2-7
usage overview 5-1

StorageDataSet component
adding empty columns 7-9
controlling column order 7-10
saving changes 8-1

StorageDataSet methods
insertRow() 6-14
startLoading() 6-14

storageDataSet property
in DataSetView 14-22

store property 12-1
stored procedures 5-3

creating 6-7
examples 6-10, 6-11
InterBase 8-11
overview 6-1
resolving 8-5
return parameters 8-11
running 5-3
tutorial 6-3, 6-8, 8-6, 8-8

ProcedureResolver 8-9
streamable data sets 8-14
streamable DataSets

using 8-14
StreamableDataSets sample

running 17-3

I n d e x I-11

streaming data 8-14
string conversions

with masks 14-17
string data

patterns 14-20
string patterns 14-15

examples of 14-18
strings

parsing 14-17
summarizing data 14-10, 14-11
Sybase stored procedures

example 6-11
synchronizing components 16-1
synonyms

displaying data in 18-5

T
table data

editing 18-9
viewing 18-9

tableColumnName property 8-11
TableDataSet component 10-8

overview 2-8
resolving 10-10
saving changes to 10-5
sorting in 13-9
tutorial

saving changes to 10-6
usage overview 10-1

tableName property 8-11
tables

creating 18-7
deleting 18-9
editing data 18-5
exploring 18-1
linked 8-12
not updateable 8-13
populating 18-9
querying 13-2
viewing data 18-5

TestFrame.java sample 6-12
testing queries 11-15
text fields

exporting 10-8
text files 10-1

applications 5-5
exporting 5-2, 10-1, 10-5
import tutorials 10-2, 10-4
importing 10-1, 12-3
text files

importing 5-2
to JDBC sources 10-11
to SQL tables 10-10
tutorial for extracting from 5-4

TextDataFile component 5-2
resolving 10-11
retrieving JDBC data for 10-5
usage overview 10-1
using 5-2

TextDataFile sample 5-4
compiling 5-12

TextFileImportExport sample 10-2
time data

patterns 14-19
time fields

exporting 10-8
time patterns 14-15

examples of 14-18
totals 14-15
transaction processing

default 8-1
transactions 8-2
troubleshooting

database connections 3-9
tutorials 19-1

adding status information 16-3
calculated aggregations 14-11
calculated columns 14-8
creating lookups 14-5
creating picklists 14-3
creating stored procedures 6-3, 6-8
database 8-16, 13-14
databases

alternate views
DataSetView component

using 14-22
resolving data changes 8-2
using dbSwing components 15-2

DataExpress components 5-2
exporting data 10-6
filtering data 13-6
importing comma-delimited data 10-2
importing formatted data 10-4
installing 3-1
international application 19-2
JDBC connections 4-2
master-detail relationships 9-6
parameterizing queries 5-27
query (for database examples) 13-2
querying databases 5-16
reading from text files 5-4
ResolverEvents 8-19
sorting data 13-10
stored procedures 8-6

coding 8-8
ProcedureResolver 8-9

viewing column information 7-2
two-tier applications

generating 11-18

I-12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

U
UI components 5-12

tutorial for adding 5-9, 5-12
UI designer

using 5-9
UI elements

adding 5-9
Unable to load dll ’JdbcOdbc.dll’ error 3-9
unique indexes 13-12
updateProcedure property 8-8
updating data

from data sources 8-16
updating data sources 8-1
URL

adding in Data Modeler 11-10
opening in Data Modeler 11-9

Use Data Module Wizard dialog
explained 11-7

user input
controlling 14-17
parsing 14-17

user interfaces
tutorial for adding DataExpress

components 5-7
tutorial for adding DataExpress

components 5-8
tutorial for adding UI components 5-9, 5-12

user name
prompting for 4-9

V
ValidationException 16-4
Variant class

locating data 13-19
variant data types 14-26
Variant.OBJECT data types

in columns 14-26
VariantFormatter class 14-15
views

displaying data in 18-5
of data 2-8

visual components
connecting to DataExpress components 5-12

W
Where clause 11-13
Where page

Data Modeler 11-13

	Database Application Developer’s Guide
	Contents
	Tutorials
	Ch 1: Introduction
	Documentation conventions

	Ch 2: Understanding JBuilder database applications
	Understanding JBuilder’s DataExpress architecture
	The Borland database-related packages

	Ch 3: Setting up JBuilder for database applications
	Connecting to databases
	JBuilder sample files
	Note for Unix users

	Setting up JDataStore
	Setting up InterBase and InterClient
	About InterBase and InterClient
	Using InterBase and InterClient with JBuilder
	Tips on using sample InterBase tables

	Adding a JDBC driver to JBuilder
	Creating the .library and .config files
	Adding the JDBC driver to projects

	Deploying database applications
	Troubleshooting database connections in the tutorials

	Ch 4: Connecting to a database
	Tutorial: Connecting to a database using the JDataStore JDBC�driver
	Adding a Database component to your application
	Setting Database connection properties

	Tutorial: Connecting to a database using InterClient JDBC drivers
	Common connection error messages

	Using the Database component in your application
	Prompting for user name and password
	Pooling JDBC connections
	Optimizing performance of JConnectionPool
	Logging output
	Example

	Ch 5: Retrieving data from a data source
	When to use JDataStore vs. JDBC drivers
	Overview of the DataExpress components
	Tutorial: An introduction to JBuilder database applications
	Creating the application structure
	Adding DataExpress components to your application
	Setting properties to connect the components
	Creating a user interface
	Connecting the DataExpress component to a UI component
	Compiling, running, and debugging your application
	Summary

	Querying a database
	Tutorial: Querying a database using the JBuilder UI
	Retrieving data by querying a database
	Creating the UI
	Setting properties in the query dialog
	The Query page
	The Parameters page
	Place SQL text in resource bundle

	Querying a database: Hints & tips
	Enhancing data set performance
	Persisting query metadata
	Opening and closing data sets
	Ensuring that a query is updateable

	Using parameterized queries to obtain data from your database
	Tutorial: Parameterizing a query
	Creating the application
	Adding a Parameter Row
	Adding a QueryDataSet
	Add the UI components

	Parameterized queries: Hints & tips
	Using parameters
	Re-executing the parameterized query with new parameters
	Parameterized queries in master-detail relationships

	Ch 6: Using stored procedures
	Tutorial: Retrieving data using stored procedures
	Creating tables and procedures for the tutorial
	Adding the DataSet components
	Adding visual components

	Stored procedures: Hints & tips
	Discussion of stored procedure escape sequences, SQL statements, and server-specific procedure calls
	Creating tables and procedures for the tutorial manually

	Stored procedures: InterBase, Oracle, and Sybase specific information
	Example: Using InterBase stored procedures
	Example: Using parameters with Oracle PL/SQL stored�procedures
	Using Sybase stored procedures
	Browsing sample applications that use stored procedures

	Writing a custom data provider
	Obtaining metadata
	Invoking initData

	Obtaining actual data
	Tips on designing a custom data provider
	Understanding the provideData method in master-detail data sets

	Ch 7: Working with columns
	Understanding Column properties and metadata
	Non-metadata Column properties
	Viewing column information in the Column designer
	The Generate RowIterator Class button
	Using the Column designer to persist metadata
	Making metadata dynamic using the Column designer
	Viewing column information in the Database Pilot

	Optimizing a query
	Setting column properties
	Persistent columns
	Combining live metadata with persistent columns
	Removing persistent columns
	Using persistent columns to add empty columns to a DataSet

	Controlling column order in a DataSet

	Ch 8: Saving changes back to your data source
	Saving changes from a QueryDataSet
	Tutorial: Adding a button to save changes from a QueryDataSet

	Saving changes back to your data source with a stored procedure
	Tutorial: Saving changes using a QueryResolver

	Coding stored procedures to handle data resolution
	Tutorial: Saving changes with a ProcedureResolver
	Example: Using InterBase stored procedures with return�parameters

	Resolving data from multiple tables
	Considerations for the type of linkage between tables in�the�query
	Table and column references (aliases) in a query string
	Controlling the setting of the column properties
	What if a table is not updateable?
	How can the user specify that a table should never be�updated?

	Using DataSets with RMI (streamable data sets)
	Example: Using streamable data sets
	Using streamable DataSet methods

	Customizing the default resolver logic
	Understanding default resolving
	Adding a QueryResolver component
	Intercepting resolver events
	Using resolver events

	Writing a custom data resolver
	Handling resolver errors
	Resolving master-detail relationships

	Ch 9: Establishing a master-detail relationship
	Defining a master-detail relationship
	Fetching details
	Fetching all details at once
	Fetching selected detail records on demand

	Editing data in master-detail data sets
	Steps to creating a master-detail relationship
	Tutorial: Creating a master-detail relationship
	Saving changes in a master-detail relationship
	Resolving master-detail data sets to a JDBC data source

	Ch 10: Importing and exporting data from a text file
	Tutorial: Importing data from a text file
	Adding columns to a TableDataSet in the editor
	Importing formatted data from a text file
	Retrieving data from a JDBC data source
	Exporting data
	Tutorial: Exporting data to a text file
	Tutorial: Using patterns for exporting numeric, date/time, and text fields
	Exporting data from a QueryDataSet to a text file
	Saving changes from a TableDataSet to a SQL table
	Saving changes loaded from a TextDataFile to a JDBC data�source

	Ch 11: Using data modules to simplify data access
	Creating a data module using the design tools
	Create the data module with the wizard
	Add data components to the data module
	Adding business logic to the data module
	Using a data module
	Adding a required library to a project
	Referencing a data module in your application
	Understanding the Use Data Module dialog

	Creating data modules using the Data Modeler
	Creating queries with the Data Modeler
	Opening a URL
	Beginning a query
	Adding a Group By clause
	Selecting rows with unique column values
	Adding a Where clause
	Adding an Order By clause
	Editing the query directly
	Testing your query
	Building multiple queries
	Specifying a master-detail relationship
	Saving your queries

	Generating database applications
	Using a generated data module in your code

	Ch 12: Persisting and storing data in a DataStore
	When to use a DataStore
	Using the DataStore Explorer
	DataStore operations

	Ch 13: Filtering, sorting, and locating data
	Retrieving data for the tutorials
	Filtering data
	Tutorial: Adding and removing filters

	Sorting data
	Sorting data in a JdbTable
	Sorting data using the JBuilder visual design tools
	Understanding sorting and indexing

	Sorting data in code

	Locating data
	Locating data with a JdbNavField
	Locating data programmatically
	Locating data using a DataRow
	Working with locate options
	Locates that handle any data type
	Column order in the DataRow and DataSet

	Ch 14: Adding functionality to database applications
	Creating lookups
	Tutorial: Data entry with a picklist
	Removing a picklist field
	Tutorial: Creating a lookup using a calculated column

	Using calculated columns
	Tutorial: Creating a calculated column in the designer
	Aggregating data with calculated fields
	Tutorial: Aggregating data with calculated fields
	Setting properties in the AggDescriptor
	Creating a custom aggregation event handler

	Adding an Edit or Display Pattern for data formatting
	Display masks
	Edit masks
	Using masks for importing and exporting data
	Data type dependent patterns
	Patterns for numeric data
	Patterns for date and time data
	Patterns for string data
	Patterns for boolean data

	Presenting an alternate view of the data
	Ensuring data persistence
	Making columns persistent

	Using variant data types
	Storing Java objects

	Ch 15: Creating a user interface using dbSwing components
	Tutorial: Using dbSwing components to create a database application UI
	Blocking editing in JdbTable

	Ch 16: Using other controls and events
	Synchronizing visual components
	Accessing data and model information from a UI component
	Displaying status information
	Building an application with a JdbStatusLabel component
	Running the JdbStatusLabel application

	Handling errors and exceptions
	Overriding default DataSetException handling on controls

	Ch 17: Creating a distributed database application using DataSetData
	Understanding the sample distributed database application (using�Java RMI and DataSetData)
	Setting up the sample application
	What is going on?
	Passing metadata by DataSetData
	Deploying the application on 3-tiers
	For more information

	Ch 18: Database administration tasks
	Exploring database tables and metadata using the Database Pilot
	Browsing database schema objects
	Setting up drivers to access remote and local databases
	Executing SQL statements
	Using the Explorer to view and edit table data

	Using the Database Pilot for database administration tasks
	Creating the SQL data source
	Populating a SQL table with data using JBuilder
	Deleting tables in JBuilder

	Monitoring database connections
	Understanding the JDBC Monitor user interface
	Using the JDBC Monitor in a running application
	Adding the MonitorButton to the Palette
	Using the MonitorButton Class from code
	Understanding MonitorButton properties

	Ch 19: Sample database application
	Sample international database application

	App A: Database FAQ
	Index
	A - C
	D
	E - H
	I - L
	M - P
	Q
	R - S
	T
	U - Z

